{"title":"WDSAE-DNDT BASED SPEECH FLUENCY DISORDER CLASSIFICATION","authors":"S. Pravin, M. Palanivelan","doi":"10.22452/mjcs.vol35no3.3","DOIUrl":null,"url":null,"abstract":"In this paper, Weight Decorrelated Stacked Autoencoder-Deep Neural Decision Trees (WDSAE-DNDT), a novel hybrid model is proposed for automating the assessment of children’s speech fluency disorders by discerning their disfluencies. In fluency disorder classification, it is imperative to know how each feature contributes to the disorder classification rather than the diagnosis itself and so the depth modified DNDT acts as the best discriminator since it is interpretable by its very nature. The WDSAE presents DNDT with a high-level latent representation of the disfluent speech. A fusion feature vector was built by combining the prosodic cues from disfluent speech segments combined with the WDSAE-based Bottleneck features. The proposed hybrid model was compared with the performance of the experimented baseline models. Further analysis was carried out to check the impact of tree cut points for each feature and epochs on the accuracy of prediction of the hybrid model. The proposed hybrid model when trained on the fusion feature set has shown appreciable improvement in the area under the Receiver Operating Characteristics (ROC) curve, classification accuracy, Kappa statistical value, and Jaccard similarity index. The WDSAE-DNDT demonstrates high precision than the baseline models in setting clinical benchmark to distinguish subjects with dysphemia from those with Specific Language Impairment.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol35no3.3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, Weight Decorrelated Stacked Autoencoder-Deep Neural Decision Trees (WDSAE-DNDT), a novel hybrid model is proposed for automating the assessment of children’s speech fluency disorders by discerning their disfluencies. In fluency disorder classification, it is imperative to know how each feature contributes to the disorder classification rather than the diagnosis itself and so the depth modified DNDT acts as the best discriminator since it is interpretable by its very nature. The WDSAE presents DNDT with a high-level latent representation of the disfluent speech. A fusion feature vector was built by combining the prosodic cues from disfluent speech segments combined with the WDSAE-based Bottleneck features. The proposed hybrid model was compared with the performance of the experimented baseline models. Further analysis was carried out to check the impact of tree cut points for each feature and epochs on the accuracy of prediction of the hybrid model. The proposed hybrid model when trained on the fusion feature set has shown appreciable improvement in the area under the Receiver Operating Characteristics (ROC) curve, classification accuracy, Kappa statistical value, and Jaccard similarity index. The WDSAE-DNDT demonstrates high precision than the baseline models in setting clinical benchmark to distinguish subjects with dysphemia from those with Specific Language Impairment.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus