On the dynamics of the combinatorial model of the real line

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
P. Chocano
{"title":"On the dynamics of the combinatorial model of the real line","authors":"P. Chocano","doi":"10.1080/14689367.2023.2193677","DOIUrl":null,"url":null,"abstract":"We study dynamical systems defined on the combinatorial model of the real line. We prove that using single-valued maps there are no periodic points of period 3, which contrasts with the classical and less restrictive setting. Then, we use Vietoris-like multivalued maps to show that there is more flexibility, at least in terms of periods, in this combinatorial framework than in the usual one because we do not have the conditions about the existence of periods given by the Sharkovski Theorem.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"395 - 404"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2193677","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study dynamical systems defined on the combinatorial model of the real line. We prove that using single-valued maps there are no periodic points of period 3, which contrasts with the classical and less restrictive setting. Then, we use Vietoris-like multivalued maps to show that there is more flexibility, at least in terms of periods, in this combinatorial framework than in the usual one because we do not have the conditions about the existence of periods given by the Sharkovski Theorem.
论实线的组合动力学模型
研究了实线组合模型上定义的动力系统。我们证明了单值映射不存在周期为3的周期点,这与经典的约束较少的情况形成了对比。然后,我们使用类似维托里斯的多值映射来证明,在这个组合框架中,至少在周期方面,比在通常的框架中有更大的灵活性,因为我们没有Sharkovski定理给出的关于周期存在的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信