Investigating the opportunity for cooling the London underground through waste heat recovery

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
H. Lagoeiro, A. Revesz, G. Davies, Ken Gysin, D. Curry, G. Faulks, Declan Murphy, Josh Vivian, G. Maidment
{"title":"Investigating the opportunity for cooling the London underground through waste heat recovery","authors":"H. Lagoeiro, A. Revesz, G. Davies, Ken Gysin, D. Curry, G. Faulks, Declan Murphy, Josh Vivian, G. Maidment","doi":"10.1177/01436244221084913","DOIUrl":null,"url":null,"abstract":"Recovering waste heat from urban infrastructures is becoming increasingly important as the UK strives to decarbonise heat, which remains one of the main challenges in the transition towards net zero. The Bunhill Waste Heat Recovery (WHR) System represents a first of its kind scheme that will recover waste energy from a ventilation shaft of the London Underground (LU) transport network. The system is based upon the installation of a heat recovery heat exchanger that consists of cooling coils and a reversible fan. The coils are connected to a heat pump that supplies low-carbon thermal energy to the Bunhill Heat Network in Central London. One particularly important aspect of the Bunhill WHR system is its ability to operate in a way that not only provides heating to the local heat network, but can also simultaneously supply cooled air to the LU tunnels depending on the operation of the reversible fan. The current paper estimates the potential cooling benefit that could be achieved with the WHR system based upon the development of a mathematical model. The model is able to predict the condition of the coil surface according to air inlet parameters, and this is used to calculate the latent and sensible cooling loads, which are applied to simulate how the system affects the local tunnel environment, with peak temperature reductions of up to 7.2 K being estimated for adjacent stations in 2030. The results from the investigation are presented together with recommendations for further development and future deployment of heat recovery from metro systems, as this technology could be applied across London and elsewhere to deliver significant carbon and cost savings while improving the thermal environment of railway tunnels. Practical Application This work investigates the cooling potential behind a practical project that involves recovering waste heat from the LU network. As electrification leads to an increased deployment of heat pump and district heating systems, waste heat could become a valuable resource for maximising energy efficiency, even more so when additional cooling benefits can be achieved. This paper aims to explore the impacts of cooling on railway tunnels, emphasising how secondary benefits, which are many times overlooked, could be critical to making waste heat recovery economically feasible, maximising its potential as a key technology for decarbonising heat.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244221084913","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Recovering waste heat from urban infrastructures is becoming increasingly important as the UK strives to decarbonise heat, which remains one of the main challenges in the transition towards net zero. The Bunhill Waste Heat Recovery (WHR) System represents a first of its kind scheme that will recover waste energy from a ventilation shaft of the London Underground (LU) transport network. The system is based upon the installation of a heat recovery heat exchanger that consists of cooling coils and a reversible fan. The coils are connected to a heat pump that supplies low-carbon thermal energy to the Bunhill Heat Network in Central London. One particularly important aspect of the Bunhill WHR system is its ability to operate in a way that not only provides heating to the local heat network, but can also simultaneously supply cooled air to the LU tunnels depending on the operation of the reversible fan. The current paper estimates the potential cooling benefit that could be achieved with the WHR system based upon the development of a mathematical model. The model is able to predict the condition of the coil surface according to air inlet parameters, and this is used to calculate the latent and sensible cooling loads, which are applied to simulate how the system affects the local tunnel environment, with peak temperature reductions of up to 7.2 K being estimated for adjacent stations in 2030. The results from the investigation are presented together with recommendations for further development and future deployment of heat recovery from metro systems, as this technology could be applied across London and elsewhere to deliver significant carbon and cost savings while improving the thermal environment of railway tunnels. Practical Application This work investigates the cooling potential behind a practical project that involves recovering waste heat from the LU network. As electrification leads to an increased deployment of heat pump and district heating systems, waste heat could become a valuable resource for maximising energy efficiency, even more so when additional cooling benefits can be achieved. This paper aims to explore the impacts of cooling on railway tunnels, emphasising how secondary benefits, which are many times overlooked, could be critical to making waste heat recovery economically feasible, maximising its potential as a key technology for decarbonising heat.
调查通过余热回收为伦敦地下降温的机会
随着英国努力实现热量脱碳,从城市基础设施中回收废热变得越来越重要,这仍然是向净零过渡的主要挑战之一。Bunhill废热回收(WHR)系统是第一个从伦敦地铁(LU)运输网络的通风井回收废热的同类方案。该系统基于热回收换热器的安装,该换热器由冷却盘管和可逆风扇组成。线圈连接到一个热泵上,该热泵为伦敦市中心的Bunhill热网提供低碳热能。Bunhill WHR系统的一个特别重要的方面是其操作方式的能力,该操作方式不仅向局部热网提供加热,而且还可以根据可逆风扇的操作同时向LU隧道供应冷却空气。目前的论文基于数学模型的发展,估计了WHR系统可能实现的潜在冷却效益。该模型能够根据进气口参数预测盘管表面的状况,并用于计算潜在和显冷负荷,这些负荷用于模拟系统如何影响当地隧道环境,预计到2030年,相邻车站的峰值温度将降低7.2 K。调查结果与地铁系统热回收的进一步开发和未来部署建议一起提交,因为这项技术可以在伦敦和其他地方应用,在改善铁路隧道热环境的同时,显著节省碳和成本。实际应用这项工作调查了一个实际项目背后的冷却潜力,该项目涉及从LU网络回收废热。随着电气化导致热泵和区域供暖系统的部署增加,废热可能成为最大限度提高能源效率的宝贵资源,当可以实现额外的冷却效益时,情况更是如此。本文旨在探索冷却对铁路隧道的影响,强调多次被忽视的二次效益对于使废热回收在经济上可行至关重要,最大限度地发挥其作为热量脱碳关键技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Building Services Engineering Research & Technology
Building Services Engineering Research & Technology 工程技术-结构与建筑技术
CiteScore
4.30
自引率
5.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信