Richa Kothari, Har Mohan Singh, Rifat Azam, Kajol Goria, Anu Bharti, Anita Singh, Somvir Bajar, Ashish Pathak, A. K. Pandey, V. V. Tyagi
{"title":"Potential avenue of genetic engineered algal derived bioactive compounds: influencing parameters, challenges and future prospects","authors":"Richa Kothari, Har Mohan Singh, Rifat Azam, Kajol Goria, Anu Bharti, Anita Singh, Somvir Bajar, Ashish Pathak, A. K. Pandey, V. V. Tyagi","doi":"10.1007/s11101-023-09859-y","DOIUrl":null,"url":null,"abstract":"<div><p>The rising living standards of humans have a high demand for natural resources. Algal biomass has emerged as a substitute for conventional resources obtained from animals and plants. Compositionally, algae constitute extractable carbohydrates, proteins, lipids, and other valuable bioactive compounds (BACs) in abundance. BACs profusely derived from algal biomass include long-chain polysaccharides, fatty acids such as mono- and polyunsaturated fatty acids (MUFA and PUFA), phenols, and proteins. The coupling of wastewater with algae for resource recovery for the BACs extraction can serve as a source of plenteous biochemicals with high industrial values like pigments, polysaccharides, lipids, antioxidants, and growth-promoting compounds. Extracted algal BACs can incorporate in the manufacturing of numerous cosmetic products, pharmaceuticals, and nutraceuticals. The productivity and quality of algal produce are still low relative to their demand. Genetic engineering has emerged as a proven approach to enhance the quality and quantity of algal produces and provide a better avenue for biofuel and value-added chemicals productions. Currently, genetic engineering has grabbed significant attention from researchers, and continuous efforts are encouraged to improve industrially viable algal species that can satisfy future demand. This article focuses on the wide range of BACs derived from algae and wastewater for resource recovery, genetic engineering in algae for BACs, influencing processing parameters for genetic engineered algae, concerns associated with genetic engineered algae, and future perspective.</p></div>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":"22 4","pages":"935 - 968"},"PeriodicalIF":7.3000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11101-023-09859-y.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11101-023-09859-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
The rising living standards of humans have a high demand for natural resources. Algal biomass has emerged as a substitute for conventional resources obtained from animals and plants. Compositionally, algae constitute extractable carbohydrates, proteins, lipids, and other valuable bioactive compounds (BACs) in abundance. BACs profusely derived from algal biomass include long-chain polysaccharides, fatty acids such as mono- and polyunsaturated fatty acids (MUFA and PUFA), phenols, and proteins. The coupling of wastewater with algae for resource recovery for the BACs extraction can serve as a source of plenteous biochemicals with high industrial values like pigments, polysaccharides, lipids, antioxidants, and growth-promoting compounds. Extracted algal BACs can incorporate in the manufacturing of numerous cosmetic products, pharmaceuticals, and nutraceuticals. The productivity and quality of algal produce are still low relative to their demand. Genetic engineering has emerged as a proven approach to enhance the quality and quantity of algal produces and provide a better avenue for biofuel and value-added chemicals productions. Currently, genetic engineering has grabbed significant attention from researchers, and continuous efforts are encouraged to improve industrially viable algal species that can satisfy future demand. This article focuses on the wide range of BACs derived from algae and wastewater for resource recovery, genetic engineering in algae for BACs, influencing processing parameters for genetic engineered algae, concerns associated with genetic engineered algae, and future perspective.
期刊介绍:
Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.