Unravelling the role of boron dopant in borocarbonitirde catalytic dehydrogenation reaction

IF 13.1 1区 化学 Q1 Energy
Xuefei Zhang , Yanbing Lu , Yingyi Han , Runping Feng , Zailai Xie
{"title":"Unravelling the role of boron dopant in borocarbonitirde catalytic dehydrogenation reaction","authors":"Xuefei Zhang ,&nbsp;Yanbing Lu ,&nbsp;Yingyi Han ,&nbsp;Runping Feng ,&nbsp;Zailai Xie","doi":"10.1016/j.jechem.2023.05.039","DOIUrl":null,"url":null,"abstract":"<div><p>Borocarbonitride (BCN) materials are newly developed metal-free catalytic materials exhibiting high selectivity in oxidative dehydrogenation (ODH) of alkanes. However, the in-depth understandings on the role of boron (B) dopants and the intrinsic activities of –C=O and –B–OH still remain unknown. Herein, we report a series of BCN materials with regulable B content and surface oxygen functional groups via self-assembly and pyrolysis of guanine and boric acid. We found that the B/C ratio is the key parameter to determine the activity of ODH and product distribution. Among them, the high ethylbenzene conversion (∼57%) and styrene selectivity (∼83%) are achieved in ODH for B<sub>1</sub>CN. The styrene selectivity can be improved by increasing of B/C ratio and this value reaches near 100% for B<sub>5</sub>CN. Structural characterizations and kinetic measurements indicate that –C=O and –B–OH dual sites on BCN are real active sites of ODH reaction. The intrinsic activity of –C=O (5.556 × 10<sup>−4</sup> s<sup>−1</sup>) is found to be 23.7 times higher than –B–OH (0.234 × 10<sup>−4</sup> s<sup>−1</sup>) site. More importantly, we reveal that the deep oxidation to undesirable CO<sub>2</sub> occurs on –C=O rather than –B–OH site, and B dopant in BCN materials can reduce the nucleophilicity of –C=O site to eliminate the CO<sub>2</sub> emission. Overall, the present work provides a new insight on the structure–function relationship of the BCN catalytic systems.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"85 ","pages":"Pages 137-143"},"PeriodicalIF":13.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562300325X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

Abstract

Borocarbonitride (BCN) materials are newly developed metal-free catalytic materials exhibiting high selectivity in oxidative dehydrogenation (ODH) of alkanes. However, the in-depth understandings on the role of boron (B) dopants and the intrinsic activities of –C=O and –B–OH still remain unknown. Herein, we report a series of BCN materials with regulable B content and surface oxygen functional groups via self-assembly and pyrolysis of guanine and boric acid. We found that the B/C ratio is the key parameter to determine the activity of ODH and product distribution. Among them, the high ethylbenzene conversion (∼57%) and styrene selectivity (∼83%) are achieved in ODH for B1CN. The styrene selectivity can be improved by increasing of B/C ratio and this value reaches near 100% for B5CN. Structural characterizations and kinetic measurements indicate that –C=O and –B–OH dual sites on BCN are real active sites of ODH reaction. The intrinsic activity of –C=O (5.556 × 10−4 s−1) is found to be 23.7 times higher than –B–OH (0.234 × 10−4 s−1) site. More importantly, we reveal that the deep oxidation to undesirable CO2 occurs on –C=O rather than –B–OH site, and B dopant in BCN materials can reduce the nucleophilicity of –C=O site to eliminate the CO2 emission. Overall, the present work provides a new insight on the structure–function relationship of the BCN catalytic systems.

Abstract Image

硼掺杂剂在硼碳酸酯催化脱氢反应中的作用
硼碳氮化物(BCN)材料是一种新开发的无金属催化材料,在烷烃的氧化脱氢(ODH)中表现出高选择性。然而,对硼(B)掺杂剂的作用以及–C=O和–B–OH的本征活性的深入理解仍然未知。在此,我们通过鸟嘌呤和硼酸的自组装和热解,报道了一系列具有可调节B含量和表面氧官能团的BCN材料。我们发现B/C比率是决定ODH活性和产品分布的关键参数。其中,对于B1CN,在ODH中实现了高乙苯转化率(~57%)和苯乙烯选择性(~83%)。提高B/C比可以提高苯乙烯的选择性,B5CN的选择性接近100%。结构表征和动力学测量表明,BCN上的–C=O和–B–OH双位点是ODH反应的真正活性位点。发现–C=O(5.556×10−4 s−1)的固有活性是–B–OH(0.234×10−4s−1。更重要的是,我们揭示了对不希望的CO2的深度氧化发生在–C=O而不是–B–OH位点,BCN材料中的B掺杂剂可以降低–C=O位点的亲核性,以消除CO2排放。总之,本工作为BCN催化体系的结构-功能关系提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信