{"title":"EXPRESS: Detecting Routines: Applications to Ridesharing CRM","authors":"Ryan Dew, Eva Ascarza, O. Netzer, N. Sicherman","doi":"10.1177/00222437231189185","DOIUrl":null,"url":null,"abstract":"Routines shape many aspects of day-to-day consumption. While prior work has established the importance of habits in consumer behavior, little work has been done to understand the implications of routines—which we define as repeated behaviors with recurring, temporal structures—for customer management. One reason for this dearth is the difficulty of measuring routines from transaction data, particularly when routines vary substantially across customers. We propose a new approach for doing so, which we apply in the context of ridesharing. We model customer-level routines with Bayesian nonparametric Gaussian processes (GPs), leveraging a novel kernel that allows for flexible yet precise estimation of routines. These GPs are nested in inhomogeneous Poisson processes of usage, allowing us to estimate customers’ routines, and decompose their usage into routine and non-routine parts. We show the value of detecting routines for customer relationship management (CRM) in the context of ridesharing, where we find that routines are associated with higher future usage and activity rates, and more resilience to service failures. Moreover, we show how these outcomes vary by the types of routines customers have, and by whether trips are part of the customer’s routine, suggesting a role for routines in segmentation and targeting.","PeriodicalId":48465,"journal":{"name":"Journal of Marketing Research","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marketing Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/00222437231189185","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
Routines shape many aspects of day-to-day consumption. While prior work has established the importance of habits in consumer behavior, little work has been done to understand the implications of routines—which we define as repeated behaviors with recurring, temporal structures—for customer management. One reason for this dearth is the difficulty of measuring routines from transaction data, particularly when routines vary substantially across customers. We propose a new approach for doing so, which we apply in the context of ridesharing. We model customer-level routines with Bayesian nonparametric Gaussian processes (GPs), leveraging a novel kernel that allows for flexible yet precise estimation of routines. These GPs are nested in inhomogeneous Poisson processes of usage, allowing us to estimate customers’ routines, and decompose their usage into routine and non-routine parts. We show the value of detecting routines for customer relationship management (CRM) in the context of ridesharing, where we find that routines are associated with higher future usage and activity rates, and more resilience to service failures. Moreover, we show how these outcomes vary by the types of routines customers have, and by whether trips are part of the customer’s routine, suggesting a role for routines in segmentation and targeting.
期刊介绍:
JMR is written for those academics and practitioners of marketing research who need to be in the forefront of the profession and in possession of the industry"s cutting-edge information. JMR publishes articles representing the entire spectrum of research in marketing. The editorial content is peer-reviewed by an expert panel of leading academics. Articles address the concepts, methods, and applications of marketing research that present new techniques for solving marketing problems; contribute to marketing knowledge based on the use of experimental, descriptive, or analytical techniques; and review and comment on the developments and concepts in related fields that have a bearing on the research industry and its practices.