Evolution of Microcracks in Epitaxial CeO2 Thin Films on YSZ-Buffered Si

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Soo Young Jung, Hyung-Jin Choi, Jun Young Lee, Min-Seok Kim, Ruiguang Ning, Dong-Hun Han, Seong Keun Kim, Sung Ok Won, June Hyuk Lee, Ji-Soo Jang, Ho Won Jang, Seung-Hyub Baek
{"title":"Evolution of Microcracks in Epitaxial CeO2 Thin Films on YSZ-Buffered Si","authors":"Soo Young Jung,&nbsp;Hyung-Jin Choi,&nbsp;Jun Young Lee,&nbsp;Min-Seok Kim,&nbsp;Ruiguang Ning,&nbsp;Dong-Hun Han,&nbsp;Seong Keun Kim,&nbsp;Sung Ok Won,&nbsp;June Hyuk Lee,&nbsp;Ji-Soo Jang,&nbsp;Ho Won Jang,&nbsp;Seung-Hyub Baek","doi":"10.1007/s13391-023-00449-w","DOIUrl":null,"url":null,"abstract":"<div><p>Epitaxial buffer layers such as ceria (CeO<sub>2</sub>)/yttria-stabilized zirconia (YSZ) allow the direct integration of functional oxide single crystal thin films on silicon (Si). Microcracks in the buffer layer, often evolving from the large thermal tensile stress, are detrimental to the integration of high-quality complex oxide thin films on Si. In this study, we investigated the evolution of microcracks in sputter-grown epitaxial CeO<sub>2</sub> layers by systematically varying the sputtering power and thickness of CeO<sub>2</sub> thin films on YSZ single crystal (low thermal mismatch) and YSZ-buffered Si (high thermal mismatch) substrates. Using a plane stress model, we revealed that as the sputtering power increased, the epitaxial CeO<sub>2</sub> thin films tended to be more compressively strained at the growth temperature. This could accommodate the tensile strain arising during cooling to room temperature, thereby suppressing the evolution of microcracks. Our result provides not only a method to suppress microcracks in the oxide heterostructure on Si, but also a tool to control their strain state, by controlling their growth parameters.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"484 - 490"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00449-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Epitaxial buffer layers such as ceria (CeO2)/yttria-stabilized zirconia (YSZ) allow the direct integration of functional oxide single crystal thin films on silicon (Si). Microcracks in the buffer layer, often evolving from the large thermal tensile stress, are detrimental to the integration of high-quality complex oxide thin films on Si. In this study, we investigated the evolution of microcracks in sputter-grown epitaxial CeO2 layers by systematically varying the sputtering power and thickness of CeO2 thin films on YSZ single crystal (low thermal mismatch) and YSZ-buffered Si (high thermal mismatch) substrates. Using a plane stress model, we revealed that as the sputtering power increased, the epitaxial CeO2 thin films tended to be more compressively strained at the growth temperature. This could accommodate the tensile strain arising during cooling to room temperature, thereby suppressing the evolution of microcracks. Our result provides not only a method to suppress microcracks in the oxide heterostructure on Si, but also a tool to control their strain state, by controlling their growth parameters.

Graphical Abstract

Abstract Image

YSZ缓冲硅外延CeO2薄膜中微裂纹的演化
铈(CeO2)/钇稳定氧化锆(YSZ)等外延缓冲层可以在硅(Si)上直接集成功能氧化物单晶薄膜。缓冲层中的微裂缝通常是由较大的热拉伸应力演变而来,不利于在硅上集成高质量的复合氧化物薄膜。在这项研究中,我们通过系统地改变 YSZ 单晶(低热失配)和 YSZ 缓冲硅(高热失配)基底上 CeO2 薄膜的溅射功率和厚度,研究了溅射生长的外延 CeO2 层中微裂纹的演变。利用平面应力模型,我们发现随着溅射功率的增加,外延 CeO2 薄膜在生长温度下的压缩应变趋于增大。这可以适应冷却到室温时产生的拉伸应变,从而抑制微裂纹的演变。我们的研究结果不仅提供了一种抑制硅基氧化物异质结构中微裂纹的方法,还提供了一种通过控制其生长参数来控制其应变状态的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信