{"title":"Epimorphic Quantum Subgroups and Coalgebra Codominions","authors":"Alexandru Chirvasitu","doi":"10.1007/s10468-023-10219-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a number of results concerning monomorphisms, epimorphisms, dominions and codominions in categories of coalgebras. Examples include: (a) representation-theoretic characterizations of monomorphisms in all of these categories that when the Hopf algebras in question are commutative specialize back to the familiar necessary and sufficient conditions (due to Bien-Borel) that a linear algebraic subgroup be epimorphically embedded; (b) the fact that a morphism in the category of (cocommutative) coalgebras, (cocommutative) bialgebras, and a host of categories of Hopf algebras has the same codominion in any of these categories which contain it; (c) the invariance of the Hopf algebra or bialgebra (co)dominion construction under field extension, again mimicking the well-known corresponding algebraic-group result; (d) the fact that surjections of coalgebras, bialgebras or Hopf algebras are regular epimorphisms (i.e. coequalizers) provided the codomain is cosemisimple; (e) in particular, the fact that embeddings of compact quantum groups are equalizers in the category thereof, generalizing analogous results on (plain) compact groups; (f) coalgebra-limit preservation results for scalar-extension functors (e.g. extending scalars along a field extension <span>\\(\\Bbbk \\le \\Bbbk '\\)</span> is a right adjoint on the category of <span>\\(\\Bbbk \\)</span>-coalgebras).</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 1","pages":"219 - 244"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10219-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a number of results concerning monomorphisms, epimorphisms, dominions and codominions in categories of coalgebras. Examples include: (a) representation-theoretic characterizations of monomorphisms in all of these categories that when the Hopf algebras in question are commutative specialize back to the familiar necessary and sufficient conditions (due to Bien-Borel) that a linear algebraic subgroup be epimorphically embedded; (b) the fact that a morphism in the category of (cocommutative) coalgebras, (cocommutative) bialgebras, and a host of categories of Hopf algebras has the same codominion in any of these categories which contain it; (c) the invariance of the Hopf algebra or bialgebra (co)dominion construction under field extension, again mimicking the well-known corresponding algebraic-group result; (d) the fact that surjections of coalgebras, bialgebras or Hopf algebras are regular epimorphisms (i.e. coequalizers) provided the codomain is cosemisimple; (e) in particular, the fact that embeddings of compact quantum groups are equalizers in the category thereof, generalizing analogous results on (plain) compact groups; (f) coalgebra-limit preservation results for scalar-extension functors (e.g. extending scalars along a field extension \(\Bbbk \le \Bbbk '\) is a right adjoint on the category of \(\Bbbk \)-coalgebras).
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.