pyfMRIqc: A Software Package for Raw fMRI Data Quality Assurance

Q1 Social Sciences
B. Williams, Michael Q. Lindner
{"title":"pyfMRIqc: A Software Package for Raw fMRI Data Quality Assurance","authors":"B. Williams, Michael Q. Lindner","doi":"10.5334/jors.280","DOIUrl":null,"url":null,"abstract":"pyfMRIqc is a tool for checking the quality of raw functional magnetic resonance imaging (fMRI) data. pyfMRIqc produces a range of output files which can be used to identify fMRI data quality issues such as artefacts, motion, signal loss etc. This tool creates a number of 3D and 4D NIFTI files that can be used for in depth quality assurance. Additionally, 2D images are created for each NIFTI file for a quick overview. These images and other information (e.g. about signal-to-noise ratio, scan parameters, etc.) are combined in a user-friendly HTML output file. pyfMRIqc is written entirely in Python and is available under a GNU GPL3 license on GitHub (https://drmichaellindner.github.io/pyfMRIqc/). pyfMRIqc can be used from the command line and therefore can be included as part of a processing pipeline or used to quality-check a series of datasets using batch scripting. The quality assurance of a single dataset can also be performed via dialog boxes.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 5

Abstract

pyfMRIqc is a tool for checking the quality of raw functional magnetic resonance imaging (fMRI) data. pyfMRIqc produces a range of output files which can be used to identify fMRI data quality issues such as artefacts, motion, signal loss etc. This tool creates a number of 3D and 4D NIFTI files that can be used for in depth quality assurance. Additionally, 2D images are created for each NIFTI file for a quick overview. These images and other information (e.g. about signal-to-noise ratio, scan parameters, etc.) are combined in a user-friendly HTML output file. pyfMRIqc is written entirely in Python and is available under a GNU GPL3 license on GitHub (https://drmichaellindner.github.io/pyfMRIqc/). pyfMRIqc can be used from the command line and therefore can be included as part of a processing pipeline or used to quality-check a series of datasets using batch scripting. The quality assurance of a single dataset can also be performed via dialog boxes.
pyfmri:一个用于原始功能磁共振成像数据质量保证的软件包
pyfMRIqc是检查原始功能磁共振成像(fMRI)数据质量的工具。pyfMRIqc生成一系列输出文件,可用于识别fMRI数据质量问题,如伪影、运动、信号丢失等。该工具创建了许多3D和4D NIFTI文件,可用于深度质量保证。此外,为每个NIFTI文件创建2D图像,以便快速概述。这些图像和其他信息(例如关于信噪比,扫描参数等)被组合在一个用户友好的HTML输出文件中。pyfMRIqc完全用Python编写,在GNU GPL3许可下可在GitHub (https://drmichaellindner.github.io/pyfMRIqc/)上获得。pyfMRIqc可以从命令行使用,因此可以作为处理管道的一部分包含,也可以使用批处理脚本对一系列数据集进行质量检查。单个数据集的质量保证也可以通过对话框来执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信