{"title":"Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago, Parts 1 and 2: A Discussion","authors":"V. Holliday, P. Bartlein, A. Scott, J. Marlon","doi":"10.1086/706264","DOIUrl":null,"url":null,"abstract":"Wolbach et al. published two papers on the Younger Dryas Impact Hypothesis (YDIH)—the paleoenvironmental effects of a purported cosmic impact at the beginning of the Younger Dryas Chronozone (YDC). Part 1 includes a selective summary of previous discussions of the YDIH but leaves out key reviews, uncritically accepts previous interpretations of purported impact, and fails to take into account abundant criticisms and contradictory data. A discussion of icecore evidence focuses only on the beginning of the YDCrather thanona longer interval thatwouldallow the context of claimed impact indicators to be evaluated. The exceptionalism claimed for many of the key data points is the result of exaggerations, and the graphical analyses themselves are not reproducible. Part 2 presents data from sedimentary records. The authors assume that impacts triggered widespread fires, but the evidence for such a link between extraterrestrial impacts and wildfires is weak. The presence of charcoal at the beginning of the YDC (YDB) fails to unambiguously support the hypothesis of impact-related fires because there is also a large peak at the end of the YDC. Stratigraphic markers used to argue for widespread burning, such as the Usselo soil of northwest Europe and the blackmat of the southwesternUnited States,were shownby their original investigators to have no plausible link to an impact event. Human population decline in North America is not supported by abundant published","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":"128 1","pages":"69 - 94"},"PeriodicalIF":1.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/706264","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/706264","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 20
Abstract
Wolbach et al. published two papers on the Younger Dryas Impact Hypothesis (YDIH)—the paleoenvironmental effects of a purported cosmic impact at the beginning of the Younger Dryas Chronozone (YDC). Part 1 includes a selective summary of previous discussions of the YDIH but leaves out key reviews, uncritically accepts previous interpretations of purported impact, and fails to take into account abundant criticisms and contradictory data. A discussion of icecore evidence focuses only on the beginning of the YDCrather thanona longer interval thatwouldallow the context of claimed impact indicators to be evaluated. The exceptionalism claimed for many of the key data points is the result of exaggerations, and the graphical analyses themselves are not reproducible. Part 2 presents data from sedimentary records. The authors assume that impacts triggered widespread fires, but the evidence for such a link between extraterrestrial impacts and wildfires is weak. The presence of charcoal at the beginning of the YDC (YDB) fails to unambiguously support the hypothesis of impact-related fires because there is also a large peak at the end of the YDC. Stratigraphic markers used to argue for widespread burning, such as the Usselo soil of northwest Europe and the blackmat of the southwesternUnited States,were shownby their original investigators to have no plausible link to an impact event. Human population decline in North America is not supported by abundant published
期刊介绍:
One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology.
The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.