Multimetal–VO2 Switchable Plasmonic Metasurface for High Contrast Optical Switching and Control at Short Wavelength Infrared Regime

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL
P. Mandal
{"title":"Multimetal–VO2 Switchable Plasmonic Metasurface for High Contrast Optical Switching and Control at Short Wavelength Infrared Regime","authors":"P. Mandal","doi":"10.1007/s11468-023-01953-3","DOIUrl":null,"url":null,"abstract":"<div><p>A switchable plasmonic metasurface is proposed for high contrast optical switching and control at short wavelength infrared regime. The metasurface is made of metal–VO<sub>2</sub>–metal (MVM) multilayer layer pairs structured centrally with circular cylindrical ring aperture and investigated numerically using FDTD computations. Left circularly polarized (LCP) light excitation shows two resonant reflection dips at  ~ 2.5 µm and ~ 1 µm for semiconducting VO<sub>2</sub> and single resonant dip at ~ 1 µm for metallic VO<sub>2</sub>. From the near-field analysis, we attribute the high wavelength reflection dip to the strong confinement of magnetic near-fields at the VO<sub>2</sub> regime and the lower wavelength reflection dip to the electric dipole resonance. The change in VO<sub>2</sub> phase from semiconducting to metallic or vice versa results in significant reflection switching (Δ<i>R</i>), &gt; 60% for the higher wavelength (2.5 µm) reflection dip. The study also confirms the reflection switching to be polarization independent with large launch angle tolerance (&gt; 10°). The design flexibility is further tested numerically by replacing various metal layers, central discs size, number of layer pairs and periods showing wide workable wavelengths ranging from 1.5 to 3 µm. Structuring the central discs system shows further modulation in the working wavelength and high wavelength reflection switching (Δ<i>R</i>) &gt; 80% with large bandwidth &gt; 500 nm (full width at half-maximum (FWHM)). The proposed metasurface is suitable for optoelectronic device integration for dynamic control and high contrast optical switching at the infrared regime.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"18 6","pages":"2323 - 2334"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-01953-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

A switchable plasmonic metasurface is proposed for high contrast optical switching and control at short wavelength infrared regime. The metasurface is made of metal–VO2–metal (MVM) multilayer layer pairs structured centrally with circular cylindrical ring aperture and investigated numerically using FDTD computations. Left circularly polarized (LCP) light excitation shows two resonant reflection dips at  ~ 2.5 µm and ~ 1 µm for semiconducting VO2 and single resonant dip at ~ 1 µm for metallic VO2. From the near-field analysis, we attribute the high wavelength reflection dip to the strong confinement of magnetic near-fields at the VO2 regime and the lower wavelength reflection dip to the electric dipole resonance. The change in VO2 phase from semiconducting to metallic or vice versa results in significant reflection switching (ΔR), > 60% for the higher wavelength (2.5 µm) reflection dip. The study also confirms the reflection switching to be polarization independent with large launch angle tolerance (> 10°). The design flexibility is further tested numerically by replacing various metal layers, central discs size, number of layer pairs and periods showing wide workable wavelengths ranging from 1.5 to 3 µm. Structuring the central discs system shows further modulation in the working wavelength and high wavelength reflection switching (ΔR) > 80% with large bandwidth > 500 nm (full width at half-maximum (FWHM)). The proposed metasurface is suitable for optoelectronic device integration for dynamic control and high contrast optical switching at the infrared regime.

用于短波红外高对比度光开关和控制的多金属- vo2可切换等离子体超表面
提出了一种可切换的等离子体超表面,用于短波红外波段的高对比度光开关和控制。该超表面由金属-二氧化氧-金属(MVM)多层层对组成,中心结构为圆柱形环形孔径,并采用时域有限差分法对其进行数值研究。左圆极化(LCP)光激发显示半导体VO2在~ 2.5µm和~ 1µm处有两个共振反射倾角,金属VO2在~ 1µm处有一个共振反射倾角。从近场分析中,我们将高波长反射倾角归因于VO2区磁场近场的强约束,而低波长反射倾角归因于电偶极子共振。VO2相位从半导体到金属或反之亦然的变化导致显著的反射切换(ΔR),较高波长(2.5µm)反射倾角为> 60%。研究还证实了反射切换与偏振无关,并且具有较大的发射角容差(> 10°)。通过更换各种金属层、中心圆盘尺寸、层对数量和周期,进一步测试了设计的灵活性,显示出1.5至3 μ m的宽工作波长。构建中央圆盘系统显示出工作波长的进一步调制和高波长反射切换(ΔR) > 80%,大带宽> 500 nm(半最大全宽(FWHM))。所提出的超表面适用于动态控制的光电器件集成和红外波段的高对比度光开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信