{"title":"The structure of fuzzy fractals generated by an orbital fuzzy iterated function system","authors":"Irina Savu, Radu Miculescu, Alexandru Mihail","doi":"10.1515/dema-2022-0217","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ( ( X , d ) , ( f i ) i ∈ I , ( ρ i ) i ∈ I ) \\left(\\left(X,d),{({f}_{i})}_{i\\in I},{\\left({\\rho }_{i})}_{i\\in I}) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ( ( I N , d Λ ) , ( τ i ) i ∈ I , ( ρ i ) i ∈ I ) \\left(\\left({I}^{{\\mathbb{N}}},{d}_{\\Lambda }),{\\left({\\tau }_{i})}_{i\\in I},{\\left({\\rho }_{i})}_{i\\in I}) , where d Λ {d}_{\\Lambda } is Baire’s metric on the code space I N {I}^{{\\mathbb{N}}} and τ i : I N → I N {\\tau }_{i}:{I}^{{\\mathbb{N}}}\\to {I}^{{\\mathbb{N}}} is given by τ i ( ( ω 1 , ω 2 , … ) ) ≔ ( i , ω 1 , ω 2 , … ) {\\tau }_{i}\\left(\\left({\\omega }_{1},{\\omega }_{2},\\ldots )):= \\left(i,{\\omega }_{1},{\\omega }_{2},\\ldots ) for every ( ω 1 , ω 2 , … ) ∈ I N \\left({\\omega }_{1},{\\omega }_{2},\\ldots )\\in {I}^{{\\mathbb{N}}} and every i ∈ I i\\in I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ( ( X , d ) , ( f i ) i ∈ I , ( ρ i ) i ∈ I ) \left(\left(X,d),{({f}_{i})}_{i\in I},{\left({\rho }_{i})}_{i\in I}) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ( ( I N , d Λ ) , ( τ i ) i ∈ I , ( ρ i ) i ∈ I ) \left(\left({I}^{{\mathbb{N}}},{d}_{\Lambda }),{\left({\tau }_{i})}_{i\in I},{\left({\rho }_{i})}_{i\in I}) , where d Λ {d}_{\Lambda } is Baire’s metric on the code space I N {I}^{{\mathbb{N}}} and τ i : I N → I N {\tau }_{i}:{I}^{{\mathbb{N}}}\to {I}^{{\mathbb{N}}} is given by τ i ( ( ω 1 , ω 2 , … ) ) ≔ ( i , ω 1 , ω 2 , … ) {\tau }_{i}\left(\left({\omega }_{1},{\omega }_{2},\ldots )):= \left(i,{\omega }_{1},{\omega }_{2},\ldots ) for every ( ω 1 , ω 2 , … ) ∈ I N \left({\omega }_{1},{\omega }_{2},\ldots )\in {I}^{{\mathbb{N}}} and every i ∈ I i\in I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.