The structure of fuzzy fractals generated by an orbital fuzzy iterated function system

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Irina Savu, Radu Miculescu, Alexandru Mihail
{"title":"The structure of fuzzy fractals generated by an orbital fuzzy iterated function system","authors":"Irina Savu, Radu Miculescu, Alexandru Mihail","doi":"10.1515/dema-2022-0217","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ( ( X , d ) , ( f i ) i ∈ I , ( ρ i ) i ∈ I ) \\left(\\left(X,d),{({f}_{i})}_{i\\in I},{\\left({\\rho }_{i})}_{i\\in I}) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ( ( I N , d Λ ) , ( τ i ) i ∈ I , ( ρ i ) i ∈ I ) \\left(\\left({I}^{{\\mathbb{N}}},{d}_{\\Lambda }),{\\left({\\tau }_{i})}_{i\\in I},{\\left({\\rho }_{i})}_{i\\in I}) , where d Λ {d}_{\\Lambda } is Baire’s metric on the code space I N {I}^{{\\mathbb{N}}} and τ i : I N → I N {\\tau }_{i}:{I}^{{\\mathbb{N}}}\\to {I}^{{\\mathbb{N}}} is given by τ i ( ( ω 1 , ω 2 , … ) ) ≔ ( i , ω 1 , ω 2 , … ) {\\tau }_{i}\\left(\\left({\\omega }_{1},{\\omega }_{2},\\ldots )):= \\left(i,{\\omega }_{1},{\\omega }_{2},\\ldots ) for every ( ω 1 , ω 2 , … ) ∈ I N \\left({\\omega }_{1},{\\omega }_{2},\\ldots )\\in {I}^{{\\mathbb{N}}} and every i ∈ I i\\in I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ( ( X , d ) , ( f i ) i ∈ I , ( ρ i ) i ∈ I ) \left(\left(X,d),{({f}_{i})}_{i\in I},{\left({\rho }_{i})}_{i\in I}) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ( ( I N , d Λ ) , ( τ i ) i ∈ I , ( ρ i ) i ∈ I ) \left(\left({I}^{{\mathbb{N}}},{d}_{\Lambda }),{\left({\tau }_{i})}_{i\in I},{\left({\rho }_{i})}_{i\in I}) , where d Λ {d}_{\Lambda } is Baire’s metric on the code space I N {I}^{{\mathbb{N}}} and τ i : I N → I N {\tau }_{i}:{I}^{{\mathbb{N}}}\to {I}^{{\mathbb{N}}} is given by τ i ( ( ω 1 , ω 2 , … ) ) ≔ ( i , ω 1 , ω 2 , … ) {\tau }_{i}\left(\left({\omega }_{1},{\omega }_{2},\ldots )):= \left(i,{\omega }_{1},{\omega }_{2},\ldots ) for every ( ω 1 , ω 2 , … ) ∈ I N \left({\omega }_{1},{\omega }_{2},\ldots )\in {I}^{{\mathbb{N}}} and every i ∈ I i\in I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.
由轨道模糊迭代函数系统生成的模糊分形结构
摘要本文给出了一个关于轨道模糊迭代函数系统((X,d),(f i)i∈i,(ρi)i≠i)\left(\left(X,d){({f}_{i} )}_{i\ in i},{\left({\rho}_{i})}。我们的结果涉及以下两个主要成分:(a)与正则迭代模糊函数系统((I N,d∧),(τI)I∈I,(ρI)I≠I)\left(\left({I}^{\mathbb{N}})相关的模糊分形,{d}_{\Lambda}),{\left({\tau}_{i}{d}_{\Lambda}是码空间I N{I}^{{\mathbb{N}}和τI:I N上的Baire度量→ I N{\tau}_{I}:{I}^{\mathbb{N}}\ to{I’^{\ mathbb}}∈I N\left({\omega}_{1},{\omega}_{2},\ldots)\在{I}^{\mathbb{N}}}}中,并且I中的每个I∈I I\;(b) 与所考虑的模糊分形相关的某些迭代函数系统的正则投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信