Ultrasensitive FET biosensor chip based on self-assembled organic nanoporous membrane for femtomolar detection of Amyloid-β

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Xiaona Cao, Xiaoping Hu, Ziyi Qiu, Ting Xu, Zhenhua Yu, Zhe Li, Huawei Jin, Bingzhe Xu
{"title":"Ultrasensitive FET biosensor chip based on self-assembled organic nanoporous membrane for femtomolar detection of Amyloid-β","authors":"Xiaona Cao,&nbsp;Xiaoping Hu,&nbsp;Ziyi Qiu,&nbsp;Ting Xu,&nbsp;Zhenhua Yu,&nbsp;Zhe Li,&nbsp;Huawei Jin,&nbsp;Bingzhe Xu","doi":"10.1007/s10544-023-00667-x","DOIUrl":null,"url":null,"abstract":"<div><p>Early diagnosis of Alzheimer’s disease (AD) is critical for preventing disease progression, however, the diagnosis of AD remains challenging for most patients due to limitations of current sensing technologies. A common pathological feature found in AD-affected brains is the accumulation of Amyloid-β (Aβ) polypeptides, which lead to neurofibrillary tangles and neuroinflammatory plaques. Here, we developed a portable ultrasensitive FET biosensor chip based on a self-assembled nanoporous membrane for ultrasensitive detection of Aβ protein in complex environments. The microscale semiconductor channel was covered with a self-assembled organic nanoporous membrane modified by antibody molecules to pick up and amplify the Aβ protein signal. The nanoporous structure helps protect the sensitive channel from non-target proteins and improves its stability since no chemical functionalization process involved, largely reduces background noise of the sensing platform. When a bio-gated target is captured, the doping state of the polymer bulk could be tuned and amplified the strength of the weak signal, achieving ultrasensitive detecting performance (enabling the device to detect target protein less than 1 fg/ml in 1 µl sample). Moreover, the device simplifies the circuit connection by integrating all the connections on a 2 cm × 2 cm chip, avoiding expensive and complex manufacturing processes, and makes it usable for portable prognosis. We believe that this ultrasensitive, portable, low-cost Aβ sensor chip shows the great potential in the early diagnosis of AD and large-scale population screening applications.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00667-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00667-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Early diagnosis of Alzheimer’s disease (AD) is critical for preventing disease progression, however, the diagnosis of AD remains challenging for most patients due to limitations of current sensing technologies. A common pathological feature found in AD-affected brains is the accumulation of Amyloid-β (Aβ) polypeptides, which lead to neurofibrillary tangles and neuroinflammatory plaques. Here, we developed a portable ultrasensitive FET biosensor chip based on a self-assembled nanoporous membrane for ultrasensitive detection of Aβ protein in complex environments. The microscale semiconductor channel was covered with a self-assembled organic nanoporous membrane modified by antibody molecules to pick up and amplify the Aβ protein signal. The nanoporous structure helps protect the sensitive channel from non-target proteins and improves its stability since no chemical functionalization process involved, largely reduces background noise of the sensing platform. When a bio-gated target is captured, the doping state of the polymer bulk could be tuned and amplified the strength of the weak signal, achieving ultrasensitive detecting performance (enabling the device to detect target protein less than 1 fg/ml in 1 µl sample). Moreover, the device simplifies the circuit connection by integrating all the connections on a 2 cm × 2 cm chip, avoiding expensive and complex manufacturing processes, and makes it usable for portable prognosis. We believe that this ultrasensitive, portable, low-cost Aβ sensor chip shows the great potential in the early diagnosis of AD and large-scale population screening applications.

Abstract Image

基于自组装有机纳米孔膜的超灵敏FET生物传感器芯片用于飞摩尔检测淀粉样蛋白-β
阿尔茨海默病(AD)的早期诊断对于预防疾病进展至关重要,然而,由于当前传感技术的局限性,对大多数患者来说,AD的诊断仍然具有挑战性。在ad影响的大脑中发现的一个常见病理特征是淀粉样蛋白-β (Aβ)多肽的积累,导致神经原纤维缠结和神经炎症斑块。在此,我们开发了一种基于自组装纳米孔膜的便携式超灵敏FET生物传感器芯片,用于复杂环境下a β蛋白的超灵敏检测。在微尺度的半导体通道上覆盖一层自组装的有机纳米孔膜,该膜被抗体分子修饰,以拾取和放大a β蛋白信号。纳米孔结构有助于保护敏感通道免受非靶蛋白的影响,并且由于不涉及化学功能化过程,提高了其稳定性,大大降低了传感平台的背景噪声。当捕获生物门控靶标时,聚合物体的掺杂状态可以调整并放大弱信号的强度,从而实现超灵敏的检测性能(使设备能够在1 μ l样品中检测到小于1 fg/ml的目标蛋白)。此外,该设备通过将所有连接集成在2cm × 2cm的芯片上,简化了电路连接,避免了昂贵和复杂的制造过程,并使其可用于便携式预后。我们相信这种超灵敏、便携、低成本的Aβ传感器芯片在阿尔茨海默病的早期诊断和大规模人群筛查应用中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信