{"title":"Ultrasensitive FET biosensor chip based on self-assembled organic nanoporous membrane for femtomolar detection of Amyloid-β","authors":"Xiaona Cao, Xiaoping Hu, Ziyi Qiu, Ting Xu, Zhenhua Yu, Zhe Li, Huawei Jin, Bingzhe Xu","doi":"10.1007/s10544-023-00667-x","DOIUrl":null,"url":null,"abstract":"<div><p>Early diagnosis of Alzheimer’s disease (AD) is critical for preventing disease progression, however, the diagnosis of AD remains challenging for most patients due to limitations of current sensing technologies. A common pathological feature found in AD-affected brains is the accumulation of Amyloid-β (Aβ) polypeptides, which lead to neurofibrillary tangles and neuroinflammatory plaques. Here, we developed a portable ultrasensitive FET biosensor chip based on a self-assembled nanoporous membrane for ultrasensitive detection of Aβ protein in complex environments. The microscale semiconductor channel was covered with a self-assembled organic nanoporous membrane modified by antibody molecules to pick up and amplify the Aβ protein signal. The nanoporous structure helps protect the sensitive channel from non-target proteins and improves its stability since no chemical functionalization process involved, largely reduces background noise of the sensing platform. When a bio-gated target is captured, the doping state of the polymer bulk could be tuned and amplified the strength of the weak signal, achieving ultrasensitive detecting performance (enabling the device to detect target protein less than 1 fg/ml in 1 µl sample). Moreover, the device simplifies the circuit connection by integrating all the connections on a 2 cm × 2 cm chip, avoiding expensive and complex manufacturing processes, and makes it usable for portable prognosis. We believe that this ultrasensitive, portable, low-cost Aβ sensor chip shows the great potential in the early diagnosis of AD and large-scale population screening applications.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00667-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00667-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis of Alzheimer’s disease (AD) is critical for preventing disease progression, however, the diagnosis of AD remains challenging for most patients due to limitations of current sensing technologies. A common pathological feature found in AD-affected brains is the accumulation of Amyloid-β (Aβ) polypeptides, which lead to neurofibrillary tangles and neuroinflammatory plaques. Here, we developed a portable ultrasensitive FET biosensor chip based on a self-assembled nanoporous membrane for ultrasensitive detection of Aβ protein in complex environments. The microscale semiconductor channel was covered with a self-assembled organic nanoporous membrane modified by antibody molecules to pick up and amplify the Aβ protein signal. The nanoporous structure helps protect the sensitive channel from non-target proteins and improves its stability since no chemical functionalization process involved, largely reduces background noise of the sensing platform. When a bio-gated target is captured, the doping state of the polymer bulk could be tuned and amplified the strength of the weak signal, achieving ultrasensitive detecting performance (enabling the device to detect target protein less than 1 fg/ml in 1 µl sample). Moreover, the device simplifies the circuit connection by integrating all the connections on a 2 cm × 2 cm chip, avoiding expensive and complex manufacturing processes, and makes it usable for portable prognosis. We believe that this ultrasensitive, portable, low-cost Aβ sensor chip shows the great potential in the early diagnosis of AD and large-scale population screening applications.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.