{"title":"On the distinct reactivity of two isomers of [IrC4H2]+ toward methane and water","authors":"Bowei Yuan, Zizhuang Liu, Xiao-Nan Wu, Shaodong Zhou","doi":"10.1007/s11426-022-1342-4","DOIUrl":null,"url":null,"abstract":"<div><p>The gas-phase reactions of [IrC<sub>4</sub>H<sub>2</sub>]<sup>+</sup> with methane and water have been explored by using mass spectrometry combined with quantum chemical calculations. Interestingly, under the employed conditions, two isomers of [IrC<sub>4</sub>H<sub>2</sub>]<sup>+</sup> co-exist with different reactivity. One of them only activates methane while the other is solely reactive with water to produce CO. Apparently, upon varying the coordination patterns, the Ir center gains rather distinct capabilities of mediating the bond breaking and making processes. The reactivity toward methane mainly depends on the orbital orientation, while the π-aromaticity of the reaction complex matters for the conversion of water. The experimental and theoretical findings in this work do not only imply the promising role the Ir atom can play in the bulk-system methane conversion, but may also be instructive on how to construct a high-performance center for steam reforming of methane.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"65 9","pages":"1720 - 1724"},"PeriodicalIF":10.4000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11426-022-1342-4.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-022-1342-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The gas-phase reactions of [IrC4H2]+ with methane and water have been explored by using mass spectrometry combined with quantum chemical calculations. Interestingly, under the employed conditions, two isomers of [IrC4H2]+ co-exist with different reactivity. One of them only activates methane while the other is solely reactive with water to produce CO. Apparently, upon varying the coordination patterns, the Ir center gains rather distinct capabilities of mediating the bond breaking and making processes. The reactivity toward methane mainly depends on the orbital orientation, while the π-aromaticity of the reaction complex matters for the conversion of water. The experimental and theoretical findings in this work do not only imply the promising role the Ir atom can play in the bulk-system methane conversion, but may also be instructive on how to construct a high-performance center for steam reforming of methane.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.