REASEARCH ON PEAR INFLORESCENCE RECOGNITION BASED ON FUSION ATTENTION MECHANISM WITH YOLOV5

IF 0.6 Q4 AGRICULTURAL ENGINEERING
Ye Xia, Xiaohui Lei, A. Herbst, Xiaolan Lyu
{"title":"REASEARCH ON PEAR INFLORESCENCE RECOGNITION BASED ON FUSION ATTENTION MECHANISM WITH YOLOV5","authors":"Ye Xia, Xiaohui Lei, A. Herbst, Xiaolan Lyu","doi":"10.35633/inmateh-69-01","DOIUrl":null,"url":null,"abstract":"Thinning is an important agronomic process in pear production, thus the detection of pear inflorescence is an important technology for intelligentization of blossom thinning. In this paper, images of buds and flowers were collected under different natural conditions for model training, and the images were augmented by data augmentation methods. Model training was performed based on the YOLOv5s network with coordinate attention mechanism added to the backbone network and compared with the native YOLOv5s, YOLOv3, SSD 300, and Faster-RCNN algorithms. The mAP, F1 score and recall of the algorithm reached 93.32%, 91.10%, and 91.99%. The model size only took up 14.1 MB, and the average detection time was 27 ms, which are suitable for application in actual intelligent blossom thinning equipment.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-69-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Thinning is an important agronomic process in pear production, thus the detection of pear inflorescence is an important technology for intelligentization of blossom thinning. In this paper, images of buds and flowers were collected under different natural conditions for model training, and the images were augmented by data augmentation methods. Model training was performed based on the YOLOv5s network with coordinate attention mechanism added to the backbone network and compared with the native YOLOv5s, YOLOv3, SSD 300, and Faster-RCNN algorithms. The mAP, F1 score and recall of the algorithm reached 93.32%, 91.10%, and 91.99%. The model size only took up 14.1 MB, and the average detection time was 27 ms, which are suitable for application in actual intelligent blossom thinning equipment.
基于yolov5融合注意机制的梨花序识别研究
疏花是梨生产中的一个重要农艺过程,因此,梨花的花序检测是实现疏花智能化的重要技术。本文采集不同自然条件下的花蕾和花朵图像进行模型训练,并通过数据增强方法对图像进行增强。基于骨干网中加入坐标注意机制的YOLOv5s网络进行模型训练,并与原生的YOLOv5s、YOLOv3、SSD 300和Faster-RCNN算法进行对比。算法的mAP、F1得分和召回率分别达到93.32%、91.10%和91.99%。模型大小仅为14.1 MB,平均检测时间为27 ms,适合在实际智能疏花设备中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INMATEH-Agricultural Engineering
INMATEH-Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
1.30
自引率
57.10%
发文量
98
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信