{"title":"Electrical vehicle grid integration for demand response in distribution networks using reinforcement learning","authors":"Fayiz Alfaverh, Mouloud Denaï, Yichuang Sun","doi":"10.1049/els2.12030","DOIUrl":null,"url":null,"abstract":"<p>Most utilities across the world already have demand response (DR) programs in place to incentivise consumers to reduce or shift their electricity consumption from peak periods to off-peak hours usually in response to financial incentives. With the increasing electrification of vehicles, emerging technologies such as vehicle-to-grid (V2G) and vehicle-to-home (V2H) have the potential to offer a broad range of benefits and services to achieve more effective management of electricity demand. In this way, electric vehicles (EV) become distributed energy storage resources and can conceivably, in conjunction with other electricity storage solutions, contribute to DR and provide additional capacity to the grid when needed. Here, an effective DR approach for V2G and V2H energy management using Reinforcement Learning (RL) is proposed. Q-learning, an RL strategy based on a reward mechanism, is used to make optimal decisions to charge or delay the charging of the EV battery pack and/or dispatch the stored electricity back to the grid without compromising the driving needs. Simulations are presented to demonstrate how the proposed DR strategy can effectively manage the charging/discharging schedule of the EV battery and how V2H and V2G can contribute to smooth the household load profile, minimise electricity bills and maximise revenue.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12030","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Most utilities across the world already have demand response (DR) programs in place to incentivise consumers to reduce or shift their electricity consumption from peak periods to off-peak hours usually in response to financial incentives. With the increasing electrification of vehicles, emerging technologies such as vehicle-to-grid (V2G) and vehicle-to-home (V2H) have the potential to offer a broad range of benefits and services to achieve more effective management of electricity demand. In this way, electric vehicles (EV) become distributed energy storage resources and can conceivably, in conjunction with other electricity storage solutions, contribute to DR and provide additional capacity to the grid when needed. Here, an effective DR approach for V2G and V2H energy management using Reinforcement Learning (RL) is proposed. Q-learning, an RL strategy based on a reward mechanism, is used to make optimal decisions to charge or delay the charging of the EV battery pack and/or dispatch the stored electricity back to the grid without compromising the driving needs. Simulations are presented to demonstrate how the proposed DR strategy can effectively manage the charging/discharging schedule of the EV battery and how V2H and V2G can contribute to smooth the household load profile, minimise electricity bills and maximise revenue.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.