{"title":"Morphology and elemental analysis of freshly emitted particles from packed-bed domestic coal combustion","authors":"M. Masekameni, T. Makonese, I. Rampedi","doi":"10.20944/preprints201911.0363.v1","DOIUrl":null,"url":null,"abstract":"This study was conducted in a laboratory-controlled environment to analyse the physical properties and elemental composition of coal combustion particles in a brazier. Particles were sampled ~1 m above the stove, using a partector. Particles were collected on gold transmission electron microscopy (TEM) grids, and polycarbonate filters for TEM and inductively coupled plasma mass spectrometry (ICP-MS) analysis, respectively. Particles for elemental analysis were collected on a 37 µm polycarbonate filter, and the exhaust was drawn in using a GilAir Plus pump. During sampling, a 2.5 µm cyclone was attached to the sampling cassette to isolate larger particles. Combustion particles emitted during the early stage of combustion were single organic spherical particles with similar characteristics to tarballs. As the combustion progressed, the particle diameter gradually decreased (from 109 nm), and the morphology changed to smaller particles (to 34.3 nm). The particles formed accretion chain structures, showing evidence of agglomeration. Furthermore, a fluffy microstructure, resembling the formation of soot, was formed in the post flaming phase. In the char-burning phase, an irregular structure of semi-spherical particles was formed, showing evidence of mineral particles infused with small carbonaceous particles. Similarly, with the findings of previous studies, the present research also observed organic spherical particles similar to tarballs. Given that during the ignition phase there was a simultaneous burning of wood as kindling and coal, the provenance of these particle emissions can be attributed to both coal and wood.","PeriodicalId":37511,"journal":{"name":"Clean Air Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Air Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints201911.0363.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
This study was conducted in a laboratory-controlled environment to analyse the physical properties and elemental composition of coal combustion particles in a brazier. Particles were sampled ~1 m above the stove, using a partector. Particles were collected on gold transmission electron microscopy (TEM) grids, and polycarbonate filters for TEM and inductively coupled plasma mass spectrometry (ICP-MS) analysis, respectively. Particles for elemental analysis were collected on a 37 µm polycarbonate filter, and the exhaust was drawn in using a GilAir Plus pump. During sampling, a 2.5 µm cyclone was attached to the sampling cassette to isolate larger particles. Combustion particles emitted during the early stage of combustion were single organic spherical particles with similar characteristics to tarballs. As the combustion progressed, the particle diameter gradually decreased (from 109 nm), and the morphology changed to smaller particles (to 34.3 nm). The particles formed accretion chain structures, showing evidence of agglomeration. Furthermore, a fluffy microstructure, resembling the formation of soot, was formed in the post flaming phase. In the char-burning phase, an irregular structure of semi-spherical particles was formed, showing evidence of mineral particles infused with small carbonaceous particles. Similarly, with the findings of previous studies, the present research also observed organic spherical particles similar to tarballs. Given that during the ignition phase there was a simultaneous burning of wood as kindling and coal, the provenance of these particle emissions can be attributed to both coal and wood.
Clean Air JournalEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
8 weeks
期刊介绍:
Clean Air Journal is the official publication of the National Association for Clean Air, a not-for-profit organisation. Clean Air Journal is a peer-reviewed journal for those interested in air quality, air quality management, and the impacts of air pollution relevant to Africa. The focus of the journal includes, but is not limited to: Impacts of human activities and natural processes on ambient air quality Air quality and climate change linkages Air pollution mitigation technologies and applications Matters of public policy regarding air quality management Measurement and analysis of ambient and indoor air pollution Atmospheric modelling application and development Atmospheric emissions Other topics on atmospheric physics or chemistry with particular relevance to Africa The scope of the journal is broad, but the core theme of the journal is air quality in Africa.