{"title":"MDCF_Net: A Multi-dimensional hybrid network for liver and tumor segmentation from CT","authors":"Jian Jiang , Yanjun Peng , Qingfan Hou , Jiao Wang","doi":"10.1016/j.bbe.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The segmentation of the liver and liver tumors is critical in the diagnosis of liver cancer, and the high mortality rate of liver cancer has made it one of the most popular areas for segmentation research. Some deep learning </span>segmentation methods outperformed traditional methods in terms of segmentation results. However, they are unable to obtain satisfactory segmentation results due to blurred original image boundaries, the presence of noise, very small lesion sites, and other factors. In this paper, we propose MDCF_Net, which has dual encoding branches composed of </span>CNN and CnnFormer and can fully utilize multi-dimensional image features. First, it extracts both intra-slice and inter-slice information and improves the accuracy of the network output by symmetrically using multi-dimensional fusion layers. In the meantime, we propose a novel feature map stacking approach that focuses on the correlation of adjacent channels of two feature maps, improving the network's ability to perceive 3D features. Furthermore, the two coding branches collaborate to obtain both texture and edge features, and the network segmentation performance is further improved. Extensive experiments were carried out on the public datasets LiTS to determine the optimal slice thickness for this task. The superiority of the segmentation performance of our proposed MDCF_Net was confirmed by comparison with other leading methods on two public datasets, the LiTS and the 3DIRCADb.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"43 2","pages":"Pages 494-506"},"PeriodicalIF":5.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000244","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The segmentation of the liver and liver tumors is critical in the diagnosis of liver cancer, and the high mortality rate of liver cancer has made it one of the most popular areas for segmentation research. Some deep learning segmentation methods outperformed traditional methods in terms of segmentation results. However, they are unable to obtain satisfactory segmentation results due to blurred original image boundaries, the presence of noise, very small lesion sites, and other factors. In this paper, we propose MDCF_Net, which has dual encoding branches composed of CNN and CnnFormer and can fully utilize multi-dimensional image features. First, it extracts both intra-slice and inter-slice information and improves the accuracy of the network output by symmetrically using multi-dimensional fusion layers. In the meantime, we propose a novel feature map stacking approach that focuses on the correlation of adjacent channels of two feature maps, improving the network's ability to perceive 3D features. Furthermore, the two coding branches collaborate to obtain both texture and edge features, and the network segmentation performance is further improved. Extensive experiments were carried out on the public datasets LiTS to determine the optimal slice thickness for this task. The superiority of the segmentation performance of our proposed MDCF_Net was confirmed by comparison with other leading methods on two public datasets, the LiTS and the 3DIRCADb.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.