Numerical analysis of a SUSHI scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media

IF 1.5 Q3 MECHANICS
Ouafa Soualhi, M. Mandari, M. Rhoudaf
{"title":"Numerical analysis of a SUSHI scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media","authors":"Ouafa Soualhi, M. Mandari, M. Rhoudaf","doi":"10.13052/ejcm2642-2085.2855","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the convergence of a schema using stabilisation and hybrid interfaces of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations:an anisotropic diffusion equation on the pressure and a convection-diffusion dispersion equation on the concentration of invading fluid. The anisotropicdiffusion operators in both equations require special care while discretizing bya finite volume method SUSHI. Later, we present some numerical experiments.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"1 1","pages":"499–540-499–540"},"PeriodicalIF":1.5000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.2855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the convergence of a schema using stabilisation and hybrid interfaces of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations:an anisotropic diffusion equation on the pressure and a convection-diffusion dispersion equation on the concentration of invading fluid. The anisotropicdiffusion operators in both equations require special care while discretizing bya finite volume method SUSHI. Later, we present some numerical experiments.
模拟多孔介质中混相流体流动的椭圆-抛物系统SUSHI格式的数值分析
本文利用描述多孔介质中混相位移的偏微分方程的稳定和混合界面证明了一种模式的收敛性。该系统由两个耦合方程组成:关于压力的各向异性扩散方程和关于入侵流体浓度的对流-扩散扩散方程。两个方程的各向异性扩散算子在用有限体积法进行离散时需要特别注意。随后,我们给出了一些数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信