{"title":"Spectral collocation method approach to thermal stability of MHD reactive squeezed fluid flow through a channel","authors":"E. Titiloye, A. Adeosun, J. Ukaegbu","doi":"10.1515/ijnsns-2021-0111","DOIUrl":null,"url":null,"abstract":"Abstract The current study focuses on the thermal stability of exothermic MHD reactive squeezed fluid flow between parallel plates. The problem’s governing nonlinear partial differential equations are transformed into dimensionless ones. The dimensionless equations obtained are highly nonlinear and are then numerically solved using the spectral collocation method (SCM). The acquired results are verified using Runge–Kutta fourth-fifth order (RK45) combined with shooting method, and a good agreement is achieved. Some graphs and tables are provided to examine the exothermic combustion process by focusing on the effects of emergent kinetic parameters such as activation energy, heat generation, and squeezed flow on the temperature profile and thermal stability of the system. It is discovered that the activation energy parameter tends to minimize the temperature profile while also improving the system’s thermal stability. However, the squeezed parameter and the heat generation rate parameter increase exothermic chemical reactions, causing the system to become unstable.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0111","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The current study focuses on the thermal stability of exothermic MHD reactive squeezed fluid flow between parallel plates. The problem’s governing nonlinear partial differential equations are transformed into dimensionless ones. The dimensionless equations obtained are highly nonlinear and are then numerically solved using the spectral collocation method (SCM). The acquired results are verified using Runge–Kutta fourth-fifth order (RK45) combined with shooting method, and a good agreement is achieved. Some graphs and tables are provided to examine the exothermic combustion process by focusing on the effects of emergent kinetic parameters such as activation energy, heat generation, and squeezed flow on the temperature profile and thermal stability of the system. It is discovered that the activation energy parameter tends to minimize the temperature profile while also improving the system’s thermal stability. However, the squeezed parameter and the heat generation rate parameter increase exothermic chemical reactions, causing the system to become unstable.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.