The structure of multiplicative functions with small partial sums

IF 1 3区 数学 Q1 MATHEMATICS
Dimitris Koukoulopoulos, K. Soundararajan
{"title":"The structure of multiplicative functions with small partial sums","authors":"Dimitris Koukoulopoulos, K. Soundararajan","doi":"10.19086/da.11963","DOIUrl":null,"url":null,"abstract":"The Landau-Selberg-Delange method provides an asymptotic formula for the partial sums of a multiplicative function whose average value on primes is a fixed complex number $v$. The shape of this asymptotic implies that $f$ can get very small on average only if $v=0,-1,-2,\\dots$. Moreover, if $v<0$, then the Dirichlet series associated to $f$ must have a zero of multiplicity $-v$ at $s=1$. In this paper, we prove a converse result that shows that if $f$ is a multiplicative function that is bounded by a suitable divisor function, and $f$ has very small partial sums, then there must be finitely many real numbers $\\gamma_1$, $\\dots$, $\\gamma_m$ such that $f(p)\\approx -p^{i\\gamma_1}-\\cdots-p^{-i\\gamma_m}$ on average. The numbers $\\gamma_j$ correspond to ordinates of zeroes of the Dirichlet series associated to $f$, counted with multiplicity. This generalizes a result of the first author, who handled the case when $|f|\\le 1$ in previous work.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/da.11963","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The Landau-Selberg-Delange method provides an asymptotic formula for the partial sums of a multiplicative function whose average value on primes is a fixed complex number $v$. The shape of this asymptotic implies that $f$ can get very small on average only if $v=0,-1,-2,\dots$. Moreover, if $v<0$, then the Dirichlet series associated to $f$ must have a zero of multiplicity $-v$ at $s=1$. In this paper, we prove a converse result that shows that if $f$ is a multiplicative function that is bounded by a suitable divisor function, and $f$ has very small partial sums, then there must be finitely many real numbers $\gamma_1$, $\dots$, $\gamma_m$ such that $f(p)\approx -p^{i\gamma_1}-\cdots-p^{-i\gamma_m}$ on average. The numbers $\gamma_j$ correspond to ordinates of zeroes of the Dirichlet series associated to $f$, counted with multiplicity. This generalizes a result of the first author, who handled the case when $|f|\le 1$ in previous work.
具有小部分和的乘法函数的结构
Landau-Selberg-Delange方法给出了一个乘积函数在质数上的平均值为固定复数$v$的部分和的渐近公式。这个渐近曲线的形状表明,$f$只有在$v=0,-1,-2,\dots$。此外,如果$v<0$,那么与$f$相关的狄利克雷级数在$s=1$必须具有重数为零的$-v$。本文证明了一个相反的结果,即如果$f$是一个以合适的除数函数为界的乘法函数,并且$f$有很小的部分和,则必定有有限多个实数$\gamma_1$, $\dots$, $\gamma_m$,使得$f(p)\approx -p^{i\gamma_1}-\cdots-p^{-i\gamma_m}$平均。数字$\gamma_j$对应于与$f$相关的狄利克雷级数的零点坐标,用多重计数。这概括了第一作者的结果,他在以前的工作中处理过$|f|\le 1$的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信