An extremum problem for the power moment of a convex polygon contained in a disc

IF 0.5 4区 数学 Q3 MATHEMATICS
I. Herburt, S. Sakata
{"title":"An extremum problem for the power moment of a convex polygon contained in a disc","authors":"I. Herburt, S. Sakata","doi":"10.1515/advgeom-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate an extremum problem for the power moment of a convex polygon contained in a disc. Our result is a generalization of a classical theorem: among all convex n-gons contained in a given disc, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the area functional. It also implies that, among all convex n-gons contained in a given disc and containing the center in those interiors, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the mean of the length of the chords passing through the center of the disc.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we investigate an extremum problem for the power moment of a convex polygon contained in a disc. Our result is a generalization of a classical theorem: among all convex n-gons contained in a given disc, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the area functional. It also implies that, among all convex n-gons contained in a given disc and containing the center in those interiors, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the mean of the length of the chords passing through the center of the disc.
包含在圆盘中的凸多边形幂矩的极值问题
摘要本文研究了圆盘上凸多边形幂矩的极值问题。我们的结果是一个经典定理的推广:在给定圆盘中包含的所有凸n-gon中,在圆内的正则n-gon(直到旋转)唯一地最大化了泛函面积。它还意味着,在给定圆盘中包含的所有凸n-gon中,在这些内部包含中心,在圆内的规则n-gon(直到旋转)唯一地最大化通过圆盘中心的弦长度的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信