{"title":"An extremum problem for the power moment of a convex polygon contained in a disc","authors":"I. Herburt, S. Sakata","doi":"10.1515/advgeom-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate an extremum problem for the power moment of a convex polygon contained in a disc. Our result is a generalization of a classical theorem: among all convex n-gons contained in a given disc, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the area functional. It also implies that, among all convex n-gons contained in a given disc and containing the center in those interiors, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the mean of the length of the chords passing through the center of the disc.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we investigate an extremum problem for the power moment of a convex polygon contained in a disc. Our result is a generalization of a classical theorem: among all convex n-gons contained in a given disc, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the area functional. It also implies that, among all convex n-gons contained in a given disc and containing the center in those interiors, the regular n-gon inscribed in the circle (up to rotation) uniquely maximizes the mean of the length of the chords passing through the center of the disc.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.