I. A. Rodríguez, Nancy Cecilia Pacheco-Castillo, J. Cárdenas-González, M. Zárate, V. Martínez-Juárez, A. Rodríguez-Pérez
{"title":"Biosorption of mercury (II) from aqueous solution onto biomass of Aspergillus niger","authors":"I. A. Rodríguez, Nancy Cecilia Pacheco-Castillo, J. Cárdenas-González, M. Zárate, V. Martínez-Juárez, A. Rodríguez-Pérez","doi":"10.29267/MXJB.2018.3.3.15","DOIUrl":null,"url":null,"abstract":"Mercury (II) removal capacity in aqueous solution by Aspergillus niger biomass was analyzed by the atomic absorption spectrometry method. The fungus grew in 2000 ppm of the metal (20.3%). Biosorption was evaluated at different pH (3.5, 4.5, and 5.5) at different times. In addition, the effect of temperature in the range of 28°C to 45oC and removal at different initial concentrations of Hg (II) from 100 to 500 mg/L were also studied. The highest biosorption (83.2% with 100 mg/L of the metal, and 1 g of biomass) was 24 h at pH of 5.5 and 28oC. With regard to temperature, the highest removal was to 28oC, with an 83.2% removal at 24 h, and at higher biomass concentrations, the removal was most efficient (100% in 12 h with 5 g of biomass). Fungal biomass showed good removal capacity of the metal in situ, 69% removal in contaminated water, after 7 days of incubation and 5 g of biomass (100 mL water), so it can be used to remove industrial wastewater.","PeriodicalId":36479,"journal":{"name":"Mexican Journal of Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mexican Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29267/MXJB.2018.3.3.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Mercury (II) removal capacity in aqueous solution by Aspergillus niger biomass was analyzed by the atomic absorption spectrometry method. The fungus grew in 2000 ppm of the metal (20.3%). Biosorption was evaluated at different pH (3.5, 4.5, and 5.5) at different times. In addition, the effect of temperature in the range of 28°C to 45oC and removal at different initial concentrations of Hg (II) from 100 to 500 mg/L were also studied. The highest biosorption (83.2% with 100 mg/L of the metal, and 1 g of biomass) was 24 h at pH of 5.5 and 28oC. With regard to temperature, the highest removal was to 28oC, with an 83.2% removal at 24 h, and at higher biomass concentrations, the removal was most efficient (100% in 12 h with 5 g of biomass). Fungal biomass showed good removal capacity of the metal in situ, 69% removal in contaminated water, after 7 days of incubation and 5 g of biomass (100 mL water), so it can be used to remove industrial wastewater.