Roslim Ramli, C. Bao, Ho Jee Hou, S. Kamaruddin, F. Rasdi, D. S. D. De Focatiis
{"title":"PREPARATION AND CHARACTERIZATION OF SPECIALTY NATURAL RUBBER LATEX CONCENTRATE","authors":"Roslim Ramli, C. Bao, Ho Jee Hou, S. Kamaruddin, F. Rasdi, D. S. D. De Focatiis","doi":"10.5254/rct.21.79945","DOIUrl":null,"url":null,"abstract":"\n Conventionally, specialty natural rubber (SpNR) latex, namely, deproteinized natural rubber (DPNR) latex and epoxidized natural rubber (ENR) latex, are prepared from low ammonia latex (LATZ) causing high material cost. To address this issue, the objective of this study is to prepare SpNR latex directly from freshly tapped NR latex. In this work, DPNR latex is prepared via a heat enzymatic hydrolysis process, while ENR latex is prepared via in situ epoxidation chemical modification process. In addition, both DPNR and ENR latex were concentrated to 60% total solid content via ultrafiltration process using membrane separation technology. Physiochemical properties of DPNR, ENR, and LATZ latex were compared. Results show that the total solid content, dry rubber content, and alkalinity level of the latexes achieved the targeted value. This study also found that nitrogen content of DPNR latex, LATZ latex, and ENR latex were at 0.11%, 0.29%, and 0.25%, respectively, indicating successful deproteinization of the DPNR latex. On the other hand, the epoxidation level of ENR latex produced in this study was at 46.3%, which is slightly lower than the targeted level of 50%. Rheological studies found that ENR latex exhibits the highest viscosity, followed by DPNR and LATZ, but all show characteristic shear-thinning behavior. This study also found that LATZ and DPNR latex are more liquid-like in nature, while ENR latex behaves more like an elastic solid. Non-ionic surfactants play a major role in influencing flow and deformation behavior of the ENR and DPNR latex.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.21.79945","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Conventionally, specialty natural rubber (SpNR) latex, namely, deproteinized natural rubber (DPNR) latex and epoxidized natural rubber (ENR) latex, are prepared from low ammonia latex (LATZ) causing high material cost. To address this issue, the objective of this study is to prepare SpNR latex directly from freshly tapped NR latex. In this work, DPNR latex is prepared via a heat enzymatic hydrolysis process, while ENR latex is prepared via in situ epoxidation chemical modification process. In addition, both DPNR and ENR latex were concentrated to 60% total solid content via ultrafiltration process using membrane separation technology. Physiochemical properties of DPNR, ENR, and LATZ latex were compared. Results show that the total solid content, dry rubber content, and alkalinity level of the latexes achieved the targeted value. This study also found that nitrogen content of DPNR latex, LATZ latex, and ENR latex were at 0.11%, 0.29%, and 0.25%, respectively, indicating successful deproteinization of the DPNR latex. On the other hand, the epoxidation level of ENR latex produced in this study was at 46.3%, which is slightly lower than the targeted level of 50%. Rheological studies found that ENR latex exhibits the highest viscosity, followed by DPNR and LATZ, but all show characteristic shear-thinning behavior. This study also found that LATZ and DPNR latex are more liquid-like in nature, while ENR latex behaves more like an elastic solid. Non-ionic surfactants play a major role in influencing flow and deformation behavior of the ENR and DPNR latex.
期刊介绍:
The scope of RC&T covers:
-Chemistry and Properties-
Mechanics-
Materials Science-
Nanocomposites-
Biotechnology-
Rubber Recycling-
Green Technology-
Characterization and Simulation.
Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.