Vinayak Sharma, Tao Hong, Valentina Cecchi, Alex Hofmann, Ji Yoon Lee
{"title":"Forecasting weather-related power outages using weighted logistic regression","authors":"Vinayak Sharma, Tao Hong, Valentina Cecchi, Alex Hofmann, Ji Yoon Lee","doi":"10.1049/stg2.12109","DOIUrl":null,"url":null,"abstract":"<p>Weather is a key driving factor of power outages. In this article, a methodology to forecast weather-related power distribution outages one day-ahead on an hourly basis is presented. A solution to address the data imbalance issue is proposed, where only a small portion of the data represents the hours impacted by outages, in the form of a weighted logistic regression model. Data imbalance is a key modelling challenge for small and rural electric utilities. The weights for outage and non-outage hours are determined by the reciprocals of their corresponding number of hours. To demonstrate the effectiveness of the proposed model, two case studies using data from a small electric utility company in the United States are presented. One case study analyses the weather-related outages aggregated up to the city level. The other case study is based on the distribution substation level, which has rarely been tackled in the outage prediction literature. Compared with two variants of ordinary logistic regression with equal weights, the proposed model shows superior performance in terms of geometric mean.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"6 5","pages":"470-479"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12109","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Weather is a key driving factor of power outages. In this article, a methodology to forecast weather-related power distribution outages one day-ahead on an hourly basis is presented. A solution to address the data imbalance issue is proposed, where only a small portion of the data represents the hours impacted by outages, in the form of a weighted logistic regression model. Data imbalance is a key modelling challenge for small and rural electric utilities. The weights for outage and non-outage hours are determined by the reciprocals of their corresponding number of hours. To demonstrate the effectiveness of the proposed model, two case studies using data from a small electric utility company in the United States are presented. One case study analyses the weather-related outages aggregated up to the city level. The other case study is based on the distribution substation level, which has rarely been tackled in the outage prediction literature. Compared with two variants of ordinary logistic regression with equal weights, the proposed model shows superior performance in terms of geometric mean.