Optimized Fuzzy Inference for Sugeno-Type Systems

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. S. Golosovskiy, A. V. Bogomolov, M. E. Balandov
{"title":"Optimized Fuzzy Inference for Sugeno-Type Systems","authors":"M. S. Golosovskiy,&nbsp;A. V. Bogomolov,&nbsp;M. E. Balandov","doi":"10.3103/S0005105522050028","DOIUrl":null,"url":null,"abstract":"<p>The article proposes an optimized algorithm that allows the use of a fuzzy inference system with a large number of inference rules (about 10 million) in computing systems limited by RAM and CPU power. Optimization is achieved by redistributing the membership functions of input variables and the dynamic formation of inference rules, which allows fuzzy system to store only inference rules conclusions, without using a complete search of the rules in the process of fuzzy inference.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":"56 5","pages":"237 - 244"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105522050028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

The article proposes an optimized algorithm that allows the use of a fuzzy inference system with a large number of inference rules (about 10 million) in computing systems limited by RAM and CPU power. Optimization is achieved by redistributing the membership functions of input variables and the dynamic formation of inference rules, which allows fuzzy system to store only inference rules conclusions, without using a complete search of the rules in the process of fuzzy inference.

Abstract Image

Sugeno型系统的优化模糊推理
本文提出了一种优化算法,允许在受RAM和CPU功率限制的计算系统中使用具有大量推理规则(约1000万)的模糊推理系统。优化是通过重新分配输入变量的隶属函数和推理规则的动态形成来实现的,这使得模糊系统只能存储推理规则的结论,而不需要在模糊推理过程中对规则进行完全搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信