Retrofitting Potential of Building envelopes Based on Semantic Surface Models Derived From Point Clouds

Q1 Engineering
Edina Selimovic, F. Noichl, K. Forth, A. Borrmann
{"title":"Retrofitting Potential of Building envelopes Based on Semantic Surface Models Derived From Point Clouds","authors":"Edina Selimovic, F. Noichl, K. Forth, A. Borrmann","doi":"10.47982/jfde.2022.powerskin.8","DOIUrl":null,"url":null,"abstract":"To meet the climate goals of the Paris agreement, the focus on energy efficiency needs to be shifted to increase the retrofitting rate of the existing building stock. Due to the lack of usable information on the existing building stock, reasoning about the retrofitting potential in early design stages is difficult. Therefore, deconstructing and building new is often regarded as the more reliable and economical option. Digital methods are missing or not robust enough to capture and reconstruct digital models of existing buildings efficiently and automatically derive reliable decision-support about whether demolition and new construction or retrofitting of existing buildings is more suitable. This paper proposes a robust, automated method for calculating existing buildings' life cycle assessments (LCA) using point clouds as input data. The main focus lies in bridging the gap between point clouds and importing semantic 3D models for LCA calculation. Therefore, the automation steps include a geometric transformation from point cloud to 3D surface model, followed by a semantic classification of the surfaces to thermal layers and their materials by assuming the surface elements by building age class.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Facade Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/jfde.2022.powerskin.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

To meet the climate goals of the Paris agreement, the focus on energy efficiency needs to be shifted to increase the retrofitting rate of the existing building stock. Due to the lack of usable information on the existing building stock, reasoning about the retrofitting potential in early design stages is difficult. Therefore, deconstructing and building new is often regarded as the more reliable and economical option. Digital methods are missing or not robust enough to capture and reconstruct digital models of existing buildings efficiently and automatically derive reliable decision-support about whether demolition and new construction or retrofitting of existing buildings is more suitable. This paper proposes a robust, automated method for calculating existing buildings' life cycle assessments (LCA) using point clouds as input data. The main focus lies in bridging the gap between point clouds and importing semantic 3D models for LCA calculation. Therefore, the automation steps include a geometric transformation from point cloud to 3D surface model, followed by a semantic classification of the surfaces to thermal layers and their materials by assuming the surface elements by building age class.
基于点云语义曲面模型的围护结构改造潜力
为了实现《巴黎协定》的气候目标,需要将重点转移到提高现有建筑存量的改造率上。由于缺乏关于现有建筑存量的可用信息,在早期设计阶段很难对改造潜力进行推理。因此,解构和新建往往被认为是更可靠、更经济的选择。数字方法缺失或不够稳健,无法有效地捕捉和重建现有建筑的数字模型,并自动获得关于拆除、新建或改造现有建筑是否更合适的可靠决策支持。本文提出了一种使用点云作为输入数据计算现有建筑生命周期评估(LCA)的稳健、自动化方法。主要关注点在于弥合点云之间的差距,并导入用于LCA计算的语义3D模型。因此,自动化步骤包括从点云到3D表面模型的几何转换,然后通过按建筑年龄类别假设表面元素,对表面到热层及其材料进行语义分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Facade Design and Engineering
Journal of Facade Design and Engineering Engineering-Architecture
CiteScore
1.90
自引率
0.00%
发文量
3
审稿时长
12 weeks
期刊介绍: The Journal of Facade Design and Engineering presents new research results and new proven practice in the field of facade design and engineering. The goal is to improve building technologies, as well as process management and architectural design. This journal is a valuable resource for professionals and academics involved in the design and engineering of building envelopes, including the following disciplines: Architecture Façade Engineering Climate Design Building Services Integration Building Physics Façade Design and Construction Management Novel Material Applications. The journal will be directed at the scientific community, but it will also feature papers that focus on the dissemination of science into practice and industrial innovations. In this way, readers explore the interaction between scientific developments, technical considerations and management issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信