Weak Superiority, Imprecise Equality and the Repugnant Conclusion – Erratum

IF 1.2 2区 哲学 0 PHILOSOPHY
Utilitas Pub Date : 2022-03-17 DOI:10.1017/S0953820822000048
K. K. Jensen
{"title":"Weak Superiority, Imprecise Equality and the Repugnant Conclusion – Erratum","authors":"K. K. Jensen","doi":"10.1017/S0953820822000048","DOIUrl":null,"url":null,"abstract":"Neither Observation 3 nor Observation 4 assumes Non-diminishing Marginal Value. But it does make a difference to assume Non-diminishing Marginal Value. Suppose first we accept Conditions 3 and 4 (i.e. Constant Marginal Value) together with the Archimedean Property (Condition 8). Consider an infinite standard sequence q, 2q, 3q, ..., nq according to Definition 9, where n is any integer, and let b be an object which is better than q. If b were lexically better than q, then the standard sequence q, 2q, 3q, ..., nq would be strictly bounded; but since it is infinite, b being lexically better than q would violate the Archimedean Property. Hence, under Constant Marginal Value, the Archimedean Property excludes any case of lexical betterness. This follows directly from the assumptions and does not depend on any Continuum Argument.","PeriodicalId":45896,"journal":{"name":"Utilitas","volume":"34 1","pages":"237 - 239"},"PeriodicalIF":1.2000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Utilitas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0953820822000048","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Neither Observation 3 nor Observation 4 assumes Non-diminishing Marginal Value. But it does make a difference to assume Non-diminishing Marginal Value. Suppose first we accept Conditions 3 and 4 (i.e. Constant Marginal Value) together with the Archimedean Property (Condition 8). Consider an infinite standard sequence q, 2q, 3q, ..., nq according to Definition 9, where n is any integer, and let b be an object which is better than q. If b were lexically better than q, then the standard sequence q, 2q, 3q, ..., nq would be strictly bounded; but since it is infinite, b being lexically better than q would violate the Archimedean Property. Hence, under Constant Marginal Value, the Archimedean Property excludes any case of lexical betterness. This follows directly from the assumptions and does not depend on any Continuum Argument.
弱优势、不平等与令人反感的结论——勘误表
观察3和观察4都不假设边际值不递减。但假设边际价值非递减会有所不同。假设我们首先接受条件3和4(即边际值恒定)以及阿基米德性质(条件8)。考虑一个无限标准序列q, 2q, 3q,…,其中n为任意整数,设b为优于q的对象,若b在词法上优于q,则标准数列q, 2q, 3q,…, nq是严格有界的;但由于它是无限的,b在词汇上优于q会违反阿基米德性质。因此,在恒定的边际值下,阿基米德性质排除了任何词汇更好的情况。这直接从假设中得出,不依赖于任何连续体论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Utilitas
Utilitas PHILOSOPHY-
CiteScore
1.50
自引率
11.10%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信