{"title":"Critical review on the development of analytical techniques for the elemental analysis of airborne particulate matter","authors":"Monika Ogrizek , Ana Kroflič , Martin Šala","doi":"10.1016/j.teac.2022.e00155","DOIUrl":null,"url":null,"abstract":"<div><p>Among all environmental pollutants, particulate matter (PM) poses the major threat to our health. These tiny airborne particles vary in shape and composition, which is reflected in their hazardous potential. The particles are small enough to penetrate deep into the lungs and even enter the bloodstream, causing severe diseases. Therefore, their regular monitoring is required. Toxic metals and other elements are often measured by regulatory agencies as well as in research laboratories, either to compare ambient concentrations with prescribed limit values or to study provenance of air pollution sources in order to target PM pollution mitigation strategies. The most established method for the determination of regulated Pb, Cd, As, Ni and other elements in PM is microwave digestion inductively coupled plasma mass spectrometry (MW/ICPMS), whereas X-ray fluorescence (XRF) techniques have also often been used, especially in research. In this review paper we critically assess these two and three other analytical techniques (<em>i.e.,</em> LA-ICPMS, PIXE and INAA) for element determination in PM deposited on filter media. All aspects from sample treatment to measurement range and limitations, costs and waste management are considered. In conclusion we identify XRF and LA-ICPMS as two promising surface techniques for the analysis of a PM deposit on a filter, which could replace the laborious wet MW/ICPMS method, which is – considering its wide use, very incriminating to the environment. In short, EDXRF is the cheapest, simplest for use and already customized for PM samples, whereas LA-ICPMS is promising, but still needs some development in the direction of autosamplers and matrix-matched standards for calibration.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"33 ","pages":"Article e00155"},"PeriodicalIF":11.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214158822000022/pdfft?md5=732e53e85895e53bfc2d72f35cf06d9f&pid=1-s2.0-S2214158822000022-main.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158822000022","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 9
Abstract
Among all environmental pollutants, particulate matter (PM) poses the major threat to our health. These tiny airborne particles vary in shape and composition, which is reflected in their hazardous potential. The particles are small enough to penetrate deep into the lungs and even enter the bloodstream, causing severe diseases. Therefore, their regular monitoring is required. Toxic metals and other elements are often measured by regulatory agencies as well as in research laboratories, either to compare ambient concentrations with prescribed limit values or to study provenance of air pollution sources in order to target PM pollution mitigation strategies. The most established method for the determination of regulated Pb, Cd, As, Ni and other elements in PM is microwave digestion inductively coupled plasma mass spectrometry (MW/ICPMS), whereas X-ray fluorescence (XRF) techniques have also often been used, especially in research. In this review paper we critically assess these two and three other analytical techniques (i.e., LA-ICPMS, PIXE and INAA) for element determination in PM deposited on filter media. All aspects from sample treatment to measurement range and limitations, costs and waste management are considered. In conclusion we identify XRF and LA-ICPMS as two promising surface techniques for the analysis of a PM deposit on a filter, which could replace the laborious wet MW/ICPMS method, which is – considering its wide use, very incriminating to the environment. In short, EDXRF is the cheapest, simplest for use and already customized for PM samples, whereas LA-ICPMS is promising, but still needs some development in the direction of autosamplers and matrix-matched standards for calibration.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.