Jianhua Li , Shuwen Dong , Peter A. Cawood , Hans Thybo , Peter D. Clift , Stephen T. Johnston , Guochun Zhao , Yueqiao Zhang
{"title":"Cretaceous long-distance lithospheric extension and surface response in South China","authors":"Jianhua Li , Shuwen Dong , Peter A. Cawood , Hans Thybo , Peter D. Clift , Stephen T. Johnston , Guochun Zhao , Yueqiao Zhang","doi":"10.1016/j.earscirev.2023.104496","DOIUrl":null,"url":null,"abstract":"<div><p>Lithospheric extension plays a pivotal role in governing the evolution of continents and the birth of oceanic basins on Earth. Despite this, quantifying wide-mode lithospheric extension and its effects on surface uplift remain elusive. The vast (> 800-km-wide) Cretaceous extensional system in South China offers a unique opportunity to study the processes and mechanism(s) of wide-mode extension and their impacts. Here we review the essential constraints from crustal and mantle structures determined from geological, seismic reflection/refraction, and other geophysical data. Our compilation reveals a stratified lithosphere with depth-dependent extension in a magma-poor domain, expressed by normal faulting in the upper crust, ductile stretching in the mid-lower crust, and localized Moho uplift associated with mantle shear zones. From the magma-poor domain to the magma-rich domain, lateral variations in the extensional mode involve increased crustal melting, decreased crust-mantle decoupling, and mantle shear-zone abandonment caused by magmatic underplating. Extension-related strain fields across the South China lithosphere are uniformly NW-SE oriented, indicating vertically coherent deformation. Stress transmission across this coherent system likely occurred via basal traction and localized mantle shearing. Lower-crustal stretching and lithospheric removal accompanied and promoted the tectonic exhumation of extensional domes and mountain ranges. We propose a coupling between slab rollback, mantle flow, and lithospheric extension. Rollback-induced mantle flow likely drove lithospheric extension in South China by imposing shear forces at the lithosphere base.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"243 ","pages":"Article 104496"},"PeriodicalIF":10.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001282522300185X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Lithospheric extension plays a pivotal role in governing the evolution of continents and the birth of oceanic basins on Earth. Despite this, quantifying wide-mode lithospheric extension and its effects on surface uplift remain elusive. The vast (> 800-km-wide) Cretaceous extensional system in South China offers a unique opportunity to study the processes and mechanism(s) of wide-mode extension and their impacts. Here we review the essential constraints from crustal and mantle structures determined from geological, seismic reflection/refraction, and other geophysical data. Our compilation reveals a stratified lithosphere with depth-dependent extension in a magma-poor domain, expressed by normal faulting in the upper crust, ductile stretching in the mid-lower crust, and localized Moho uplift associated with mantle shear zones. From the magma-poor domain to the magma-rich domain, lateral variations in the extensional mode involve increased crustal melting, decreased crust-mantle decoupling, and mantle shear-zone abandonment caused by magmatic underplating. Extension-related strain fields across the South China lithosphere are uniformly NW-SE oriented, indicating vertically coherent deformation. Stress transmission across this coherent system likely occurred via basal traction and localized mantle shearing. Lower-crustal stretching and lithospheric removal accompanied and promoted the tectonic exhumation of extensional domes and mountain ranges. We propose a coupling between slab rollback, mantle flow, and lithospheric extension. Rollback-induced mantle flow likely drove lithospheric extension in South China by imposing shear forces at the lithosphere base.
期刊介绍:
Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.