Approximating coarse Ricci curvature on submanifolds of Euclidean space

IF 0.5 4区 数学 Q3 MATHEMATICS
Antonio G. Ache, M. Warren
{"title":"Approximating coarse Ricci curvature on submanifolds of Euclidean space","authors":"Antonio G. Ache, M. Warren","doi":"10.1515/advgeom-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract For an embedded submanifold Σ ⊂ ℝN, Belkin and Niyogi showed that one can approximate the Laplacian operator using heat kernels. Using a definition of coarse Ricci curvature derived by iterating Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the same way. For this purpose, we derive asymptotics for the approximation of the Ricci curvature proposed in [2]. Specifically, we prove Proposition 3.2 in [2].","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For an embedded submanifold Σ ⊂ ℝN, Belkin and Niyogi showed that one can approximate the Laplacian operator using heat kernels. Using a definition of coarse Ricci curvature derived by iterating Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the same way. For this purpose, we derive asymptotics for the approximation of the Ricci curvature proposed in [2]. Specifically, we prove Proposition 3.2 in [2].
欧氏空间子流形上粗糙Ricci曲率的逼近
关于嵌入子流形∑⊂ℝN、 Belkin和Niyogi证明了使用热核可以近似拉普拉斯算子。利用迭代拉普拉斯算子得到的粗糙Ricci曲率的定义,我们用同样的方法近似子流形∑的粗糙Ricci-曲率。为此,我们导出了[2]中提出的Ricci曲率近似的渐近性。具体来说,我们在[2]中证明了命题3.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信