Exploration on prior driving modes for automated vehicle collisions

IF 2.9 3区 工程技术 Q2 ENVIRONMENTAL STUDIES
Subasish Das, X. Kong, M. Hossain
{"title":"Exploration on prior driving modes for automated vehicle collisions","authors":"Subasish Das, X. Kong, M. Hossain","doi":"10.1080/12265934.2022.2142650","DOIUrl":null,"url":null,"abstract":"ABSTRACT The emergence of automated vehicles (AV) has been occurring rapidly as these vehicles have the potential to reduce/eradicate human driving faults and related collisions. To enhance AV safety, the NHTSA recommends the continuous presence of a backup human driver that has a reasonable understanding of AV technologies to ensure disengagement when manual overtake is required. However, due to several AV-related traffic crashes during roadway testing and extensive media interest, AV safety has become a critical issue. This study collected 255 crash reports filed by different manufacturers testing AVs in California from September 2014 to April 2020. The crash dataset was analyzed using two data mining algorithms (association rule mining and text network analysis) to identify the key AV-related crash attributes and their associations based on the vehicle’s prior driving mode (conventional or automated). The results show that the manner of collision and the prior movement of the testing vehicle are strongly connected with prior driving mode. For example, AV crashes in a manual driving mode often result in a sideswipe collision during moving status, whereas AV crashes in an automated driving mode are highly associated with rear-end collisions when AVs are stopped in traffic. The findings of this study can help policymakers and AV engineers improve AV deployment strategies to support the adoption of AVs and promote potential safety benefits for AV technologies.","PeriodicalId":46464,"journal":{"name":"International Journal of Urban Sciences","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Urban Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/12265934.2022.2142650","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT The emergence of automated vehicles (AV) has been occurring rapidly as these vehicles have the potential to reduce/eradicate human driving faults and related collisions. To enhance AV safety, the NHTSA recommends the continuous presence of a backup human driver that has a reasonable understanding of AV technologies to ensure disengagement when manual overtake is required. However, due to several AV-related traffic crashes during roadway testing and extensive media interest, AV safety has become a critical issue. This study collected 255 crash reports filed by different manufacturers testing AVs in California from September 2014 to April 2020. The crash dataset was analyzed using two data mining algorithms (association rule mining and text network analysis) to identify the key AV-related crash attributes and their associations based on the vehicle’s prior driving mode (conventional or automated). The results show that the manner of collision and the prior movement of the testing vehicle are strongly connected with prior driving mode. For example, AV crashes in a manual driving mode often result in a sideswipe collision during moving status, whereas AV crashes in an automated driving mode are highly associated with rear-end collisions when AVs are stopped in traffic. The findings of this study can help policymakers and AV engineers improve AV deployment strategies to support the adoption of AVs and promote potential safety benefits for AV technologies.
自动车辆碰撞优先驾驶模式探讨
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
6.90%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信