On the Role of Speed in Technological and Biological Information Transfer for Computations

IF 1.4 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
János Végh, Ádám József Berki
{"title":"On the Role of Speed in Technological and Biological Information Transfer for Computations","authors":"János Végh,&nbsp;Ádám József Berki","doi":"10.1007/s10441-022-09450-6","DOIUrl":null,"url":null,"abstract":"<div><p>In all kinds of implementations of computing, whether technological or biological, some material carrier for the information exists, so in real-world implementations, the propagation speed of information cannot exceed the speed of its carrier. Because of this limitation, one must also consider the transfer time between computing units for any implementation. We need a different mathematical method to consider this limitation: classic mathematics can only describe infinitely fast and small computing system implementations. The difference between mathematical handling methods leads to different descriptions of the computing features of the systems. The proposed handling also explains why biological implementations can have lifelong learning and technological ones cannot. Our conclusion about learning matches published experimental evidence, both in biological and technological computing.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10441-022-09450-6.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-022-09450-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

In all kinds of implementations of computing, whether technological or biological, some material carrier for the information exists, so in real-world implementations, the propagation speed of information cannot exceed the speed of its carrier. Because of this limitation, one must also consider the transfer time between computing units for any implementation. We need a different mathematical method to consider this limitation: classic mathematics can only describe infinitely fast and small computing system implementations. The difference between mathematical handling methods leads to different descriptions of the computing features of the systems. The proposed handling also explains why biological implementations can have lifelong learning and technological ones cannot. Our conclusion about learning matches published experimental evidence, both in biological and technological computing.

Abstract Image

论速度在计算技术和生物信息传递中的作用
在各种计算实现中,无论是技术上的还是生物上的,都存在着信息的某种物质载体,因此在现实世界的实现中,信息的传播速度不可能超过其载体的速度。由于这种限制,还必须考虑任何实现的计算单元之间的传输时间。我们需要一种不同的数学方法来考虑这种限制:经典数学只能描述无限快速和小型的计算系统实现。数学处理方法的不同导致了对系统计算特征的不同描述。提出的处理方法也解释了为什么生物实现可以终身学习,而技术实现则不能。我们关于学习的结论与在生物和技术计算领域发表的实验证据相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biotheoretica
Acta Biotheoretica 生物-生物学
CiteScore
2.70
自引率
7.70%
发文量
19
审稿时长
3 months
期刊介绍: Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory. Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts. Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified. Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信