WHO’S AFRAID OF MATHEMATICAL DIAGRAMS?

IF 1.4 1区 哲学 0 PHILOSOPHY
Silvia De Toffoli
{"title":"WHO’S AFRAID OF MATHEMATICAL DIAGRAMS?","authors":"Silvia De Toffoli","doi":"10.3998/phimp.1348","DOIUrl":null,"url":null,"abstract":"Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions.   Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs.  In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that diagrams form genuine notational systems, and I argue that this explains why they can play a role in the inferential structure of proofs without undermining their reliability.  I then consider whether diagrams can be essential to the proofs in which they appear.@font-face{font-family:\"Cambria Math\";panose-1:2 4 5 3 5 4 6 3 2 4;mso-font-charset:0;mso-generic-font-family:roman;mso-font-pitch:variable;mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face{font-family:Calibri;panose-1:2 15 5 2 2 2 4 3 2 4;mso-font-charset:0;mso-generic-font-family:swiss;mso-font-pitch:variable;mso-font-signature:-536859905 -1073697537 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal{mso-style-unhide:no;mso-style-qformat:yes;mso-style-parent:\"\";margin:0in;line-height:200%;mso-pagination:widow-orphan;font-size:12.0pt;font-family:\"Calibri\",sans-serif;mso-fareast-font-family:Calibri;}.MsoChpDefault{mso-style-type:export-only;mso-default-props:yes;font-family:\"Calibri\",sans-serif;mso-ascii-font-family:Calibri;mso-fareast-font-family:Calibri;mso-hansi-font-family:Calibri;mso-bidi-font-family:Calibri;}.MsoPapDefault{mso-style-type:export-only;line-height:200%;}div.WordSection1{page:WordSection1;}","PeriodicalId":20021,"journal":{"name":"Philosophers' Imprint","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophers' Imprint","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3998/phimp.1348","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 3

Abstract

Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions.   Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs.  In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that diagrams form genuine notational systems, and I argue that this explains why they can play a role in the inferential structure of proofs without undermining their reliability.  I then consider whether diagrams can be essential to the proofs in which they appear.@font-face{font-family:"Cambria Math";panose-1:2 4 5 3 5 4 6 3 2 4;mso-font-charset:0;mso-generic-font-family:roman;mso-font-pitch:variable;mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face{font-family:Calibri;panose-1:2 15 5 2 2 2 4 3 2 4;mso-font-charset:0;mso-generic-font-family:swiss;mso-font-pitch:variable;mso-font-signature:-536859905 -1073697537 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal{mso-style-unhide:no;mso-style-qformat:yes;mso-style-parent:"";margin:0in;line-height:200%;mso-pagination:widow-orphan;font-size:12.0pt;font-family:"Calibri",sans-serif;mso-fareast-font-family:Calibri;}.MsoChpDefault{mso-style-type:export-only;mso-default-props:yes;font-family:"Calibri",sans-serif;mso-ascii-font-family:Calibri;mso-fareast-font-family:Calibri;mso-hansi-font-family:Calibri;mso-bidi-font-family:Calibri;}.MsoPapDefault{mso-style-type:export-only;line-height:200%;}div.WordSection1{page:WordSection1;}
谁会害怕数学图表?
数学图表在现代数学中经常被使用。然而,它们被广泛认为无助于证明的证明力:它们被认为仅仅是插图或非图解表达的简写。此外,当它们被推断使用时,它们被视为威胁证据的可靠性。在本文中,我考察了一些图的例子,它们抵制了这种不屑一顾的描述。通过展示两个图解证明,一个来自拓扑学,一个来自代数,我展示了图表形成真正的符号系统,我认为这解释了为什么它们可以在证明的推理结构中发挥作用,而不会破坏它们的可靠性。然后我考虑图表对于它们出现的证明是否必不可少。mso-font-charset:0;mso- general -font-family:roman;mso-font-pitch:variable;mso-font-signature:-536870145 1107305727 0 0 415 0;mso- general -font-family:swiss;MsoNormal,李。MsoNormal,div.MsoNormal {mso-style-unhide:不;mso-style-qformat:是的,mso-style-parent: ";保证金:0,行高:200%;mso-pagination: widow-orphan;字体大小:12.0 pt;字体类型:“Calibri”,无衬线;mso-fareast-font-family: Calibri;} .MsoChpDefault {mso-style-type:仅供出口;mso-default-props:是的,字体类型:“Calibri”,无衬线;mso-ascii-font-family: Calibri; mso-fareast-font-family: Calibri; mso-hansi-font-family: Calibri; mso-bidi-font-family: Calibri;} .MsoPapDefault {mso-style-type:仅供出口;行高:200%;}div.WordSection1{页面:WordSection1;}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Philosophers' Imprint
Philosophers' Imprint PHILOSOPHY-
CiteScore
3.20
自引率
7.10%
发文量
27
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信