{"title":"A Development of PM2.5 Forecasting System in South Korea Using Chemical Transport Modeling and Machine Learning","authors":"Youn-Seo Koo, Hee-Yong Kwon, Hyosik Bae, Hui-Young Yun, Dae-Ryun Choi, SukHyun Yu, Kyung-Hui Wang, Ji-Seok Koo, Jae-Bum Lee, Min-Hyeok Choi, Jeong-Beom Lee","doi":"10.1007/s13143-023-00314-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ambient exposure to PM2.5 can adversely affect public health, and forecasting PM2.5 is essential for implementing protection measures in advance. Current PM2.5 forecasting systems are primarily based on the chemical transport model of Community Multiscale Air Quality (CMAQ) modeling systems and the Weather Research and Forecasting (WRF) model. However, the forecasting accuracies of these models are substantially constrained by uncertainties in the input data of anthropogenic emissions and meteorological fields, as well as inherent limitations in the models. The PM2.5 forecasting system developed in this study aimed at overcoming the limitations of CMAQ predictions by utilizing advanced machine learning algorithms. The proposed system was developed using forecast data from CMAQ and WRF, as well as observed PM2.5 concentrations and meteorological variables at monitoring stations in China and South Korea. It was then applied to national PM2.5 forecasting in South Korea. This study focused on developing secondary input data and machine learning models that can reflect the long-range transport in Northeast Asia. The proposed system can forecast 6-h average PM2.5 concentrations up to two days in advance at 19 forecast regions in South Korea. To evaluate the performance of the proposed models, a real-time machine learning-based forecasting system was applied to 19 forecasting regions from January 2020 to April 2021. Herein, the four machine learning algorithms applied, including deep neural network, recurrent neural network, convolutional neural network, and Ensemble, could reduce the over-prediction of the CMAQ forecast by decreasing the normal mean bias and improving the index of agreement. The reduced false alarm rates and high prediction accuracy confirm the feasibility of these models for practical applications.\n</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 5","pages":"577 - 595"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00314-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ambient exposure to PM2.5 can adversely affect public health, and forecasting PM2.5 is essential for implementing protection measures in advance. Current PM2.5 forecasting systems are primarily based on the chemical transport model of Community Multiscale Air Quality (CMAQ) modeling systems and the Weather Research and Forecasting (WRF) model. However, the forecasting accuracies of these models are substantially constrained by uncertainties in the input data of anthropogenic emissions and meteorological fields, as well as inherent limitations in the models. The PM2.5 forecasting system developed in this study aimed at overcoming the limitations of CMAQ predictions by utilizing advanced machine learning algorithms. The proposed system was developed using forecast data from CMAQ and WRF, as well as observed PM2.5 concentrations and meteorological variables at monitoring stations in China and South Korea. It was then applied to national PM2.5 forecasting in South Korea. This study focused on developing secondary input data and machine learning models that can reflect the long-range transport in Northeast Asia. The proposed system can forecast 6-h average PM2.5 concentrations up to two days in advance at 19 forecast regions in South Korea. To evaluate the performance of the proposed models, a real-time machine learning-based forecasting system was applied to 19 forecasting regions from January 2020 to April 2021. Herein, the four machine learning algorithms applied, including deep neural network, recurrent neural network, convolutional neural network, and Ensemble, could reduce the over-prediction of the CMAQ forecast by decreasing the normal mean bias and improving the index of agreement. The reduced false alarm rates and high prediction accuracy confirm the feasibility of these models for practical applications.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.