{"title":"Optically Important Cu2 ZnSnS4 (CZTS) Nanoparticles Synthesis using a Hydrothermal Route with Citric acid as a Structure Directing Agent","authors":"B. Pandey, Y. Goswami","doi":"10.13005/ojc/390429","DOIUrl":null,"url":null,"abstract":"Copper zinc tin sulphide (CZTS) has emerged as a highly promising, cost-effective, and environmentally friendly material for solar energy conversion via photovoltaic and photocatalysis. This paper presents the synthesis of quasi Cu2ZnSnS4 nanoparticles using a hydrothermal route with citric acid as a structure-directing agent. The CZTS nanoparticles' morphological, structural, and optical properties were comprehensively analysed using X-ray diffraction, scanning electron microscopy, and UV-Vis absorption studies. The results demonstrate the successful synthesis of CZTS nanoparticles with a novel narrow size distribution, making them excellent candidates as absorber layers in solar cells. This discovery holds significant potential for advancing low-cost and efficient solar energy conversion technologies. By harnessing the unique properties of CZTS, this research offers a promising solution towards sustainable energy production and a greener future.","PeriodicalId":19599,"journal":{"name":"Oriental Journal Of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal Of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojc/390429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper zinc tin sulphide (CZTS) has emerged as a highly promising, cost-effective, and environmentally friendly material for solar energy conversion via photovoltaic and photocatalysis. This paper presents the synthesis of quasi Cu2ZnSnS4 nanoparticles using a hydrothermal route with citric acid as a structure-directing agent. The CZTS nanoparticles' morphological, structural, and optical properties were comprehensively analysed using X-ray diffraction, scanning electron microscopy, and UV-Vis absorption studies. The results demonstrate the successful synthesis of CZTS nanoparticles with a novel narrow size distribution, making them excellent candidates as absorber layers in solar cells. This discovery holds significant potential for advancing low-cost and efficient solar energy conversion technologies. By harnessing the unique properties of CZTS, this research offers a promising solution towards sustainable energy production and a greener future.
期刊介绍:
Oriental Journal of Chemistry was started in 1985 with the aim to promote chemistry research. The journal consists of articles which are rigorously peer-reviewed. The journal was indexed in Emerging Science citation index in 2016. The Editorial board member consists of eminent international scientist in all fields of Chemistry. Details of each member and their contact information is mentioned in website. The journal has thorough ethics policies and uses plagiarism detection software(ithenticate) to screen each submission. The journal has recently partnered with publons as a part of making our reviews more transparent. The journal has recently incorporated PlumX for article level matrix. The journal is promoting research on all social and academic platforms mentioned in PlumX guidelines. The journal uses google maps to improve on the geographical distribution of Editorial board members as well as authors.