{"title":"A study on window-size selection for threshold and bootstrap value-at-risk models","authors":"Anri Smith, Chun-Kai Huang","doi":"10.21314/jrmv.2019.211","DOIUrl":null,"url":null,"abstract":"This paper investigates the effects of window size selection on various models for Value-at-Risk (VaR) forecasting using high performance computing. Subsequently, automated procedures using change-point analysis for optimal window size selection are proposed. In particular, stationary bootstrapping and the peaks-over-threshold methods are utilized for the rolling daily VaR estimation and are contrasted with the classical conditional Gaussian model. It is evidenced that change-point procedures can, on average, result in more adequate risk predictions than a predetermined fixed window size. The data sets analyzed include indices across 5 continents, i.e., the Dow Jones Industrial Average Index (DJI), the Financial Times Stock Exchange 100 Index (UKX), the NIKKEI Top 225 Index (NKY), the Johannesburg Stock Exchange Top 40 Index (JSE Top40), the Ibovespa Brazil Sao Paulo Stock Exchange All Index (IBOV), and the Bombay Stock Exchange Top 500 Index (BSE 500).","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Model Validation","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jrmv.2019.211","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the effects of window size selection on various models for Value-at-Risk (VaR) forecasting using high performance computing. Subsequently, automated procedures using change-point analysis for optimal window size selection are proposed. In particular, stationary bootstrapping and the peaks-over-threshold methods are utilized for the rolling daily VaR estimation and are contrasted with the classical conditional Gaussian model. It is evidenced that change-point procedures can, on average, result in more adequate risk predictions than a predetermined fixed window size. The data sets analyzed include indices across 5 continents, i.e., the Dow Jones Industrial Average Index (DJI), the Financial Times Stock Exchange 100 Index (UKX), the NIKKEI Top 225 Index (NKY), the Johannesburg Stock Exchange Top 40 Index (JSE Top40), the Ibovespa Brazil Sao Paulo Stock Exchange All Index (IBOV), and the Bombay Stock Exchange Top 500 Index (BSE 500).
期刊介绍:
As monetary institutions rely greatly on economic and financial models for a wide array of applications, model validation has become progressively inventive within the field of risk. The Journal of Risk Model Validation focuses on the implementation and validation of risk models, and aims to provide a greater understanding of key issues including the empirical evaluation of existing models, pitfalls in model validation and the development of new methods. We also publish papers on back-testing. Our main field of application is in credit risk modelling but we are happy to consider any issues of risk model validation for any financial asset class. The Journal of Risk Model Validation considers submissions in the form of research papers on topics including, but not limited to: Empirical model evaluation studies Backtesting studies Stress-testing studies New methods of model validation/backtesting/stress-testing Best practices in model development, deployment, production and maintenance Pitfalls in model validation techniques (all types of risk, forecasting, pricing and rating)