Tohru Okada, H. Ueda, Y. Miyazaki, Masanori Yasuyama, H. Fujii
{"title":"Effect of strength of steel sheets on peel tensile strength and failure mode of dissimilar joint of spot welds","authors":"Tohru Okada, H. Ueda, Y. Miyazaki, Masanori Yasuyama, H. Fujii","doi":"10.1080/09507116.2023.2202967","DOIUrl":null,"url":null,"abstract":"Abstract Advanced high strength steel sheet (AHSS) is widely used in the automotive body for weight reduction and the improvement of crash performance. Peel tensile strength of spot welds tends to decrease as the steel sheet strength increases. Therefore, in order to further expand the application of AHSS, technology to prevent fracture of spot welds is required. In order to achieve that, it is necessary to understand the characteristics of spot-welded joints and clarify the controlling factors. However, most of the conventional joint strength evaluations have been conducted on the same kind material joints, and there are few systematic studies on the joint strength and fracture mode of dissimilar material joints that are often used in actual vehicles. Therefore, the purpose of this study is to obtain a guideline for grasping the characteristics of dissimilar joints in case of the plug failure. Using various joint shapes, we compared the peel tensile strength and failure position of the same kind material joints and the dissimilar material joints with the TS1500 MPa class hot-stamped steel sheet. As a result, it was found that the deformation behaviour of the test piece affects the joint strength and fracture position of the dissimilar material joints. Specifically, in dissimilar material joints, cross tension joints and double cup-shape tension joints tended to break on the TS1500 MPa class hot-stamped steel side. On the other hand, L-shape tension joints broke on the lower strength material side. From these results, it is considered important to understand their deformation behaviour in order to analyse and predict the fracture phenomenon of spot welds in actual vehicles and automotive parts.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":"37 1","pages":"295 - 308"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2202967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Advanced high strength steel sheet (AHSS) is widely used in the automotive body for weight reduction and the improvement of crash performance. Peel tensile strength of spot welds tends to decrease as the steel sheet strength increases. Therefore, in order to further expand the application of AHSS, technology to prevent fracture of spot welds is required. In order to achieve that, it is necessary to understand the characteristics of spot-welded joints and clarify the controlling factors. However, most of the conventional joint strength evaluations have been conducted on the same kind material joints, and there are few systematic studies on the joint strength and fracture mode of dissimilar material joints that are often used in actual vehicles. Therefore, the purpose of this study is to obtain a guideline for grasping the characteristics of dissimilar joints in case of the plug failure. Using various joint shapes, we compared the peel tensile strength and failure position of the same kind material joints and the dissimilar material joints with the TS1500 MPa class hot-stamped steel sheet. As a result, it was found that the deformation behaviour of the test piece affects the joint strength and fracture position of the dissimilar material joints. Specifically, in dissimilar material joints, cross tension joints and double cup-shape tension joints tended to break on the TS1500 MPa class hot-stamped steel side. On the other hand, L-shape tension joints broke on the lower strength material side. From these results, it is considered important to understand their deformation behaviour in order to analyse and predict the fracture phenomenon of spot welds in actual vehicles and automotive parts.
期刊介绍:
Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.