From breather solutions to lump solutions: A construction method for the Zakharov equation

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Feng Yuan, Behzad Ghanbari, Yongshuai Zhang, Abdul Majid Wazwaz
{"title":"From breather solutions to lump solutions: A construction method for the Zakharov equation","authors":"Feng Yuan, Behzad Ghanbari, Yongshuai Zhang, Abdul Majid Wazwaz","doi":"10.1088/1674-1056/acf706","DOIUrl":null,"url":null,"abstract":"Periodic solutions of the Zakharov equation are investigated in this paper. Through performing the limit operation $\\lambda_{2l-1}\\to\\lambda_1$ on the eigenvalues of the Lax pair obtained from the $n$-fold Darboux transformation, an order-$n$ breather-positon solution is first obtained from a plane wave seed. It is then proven that an order-$n$ lump solution can be further constructed through taking the limit $\\lambda_1\\to\\lambda_0$ on the breather-positon solution, because the unique eigenvalue $\\lambda_0$ associated with the Lax pair eigenfunction $\\Psi(\\lambda_0)=0$ corresponds to the limit of the infinite-periodic solutions. A convenient procedure of generating higher-order lump solutions of the Zakharov equation is also investigated based on the idea of the degeneration of double eigenvalues in multi-breather solutions.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/acf706","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Periodic solutions of the Zakharov equation are investigated in this paper. Through performing the limit operation $\lambda_{2l-1}\to\lambda_1$ on the eigenvalues of the Lax pair obtained from the $n$-fold Darboux transformation, an order-$n$ breather-positon solution is first obtained from a plane wave seed. It is then proven that an order-$n$ lump solution can be further constructed through taking the limit $\lambda_1\to\lambda_0$ on the breather-positon solution, because the unique eigenvalue $\lambda_0$ associated with the Lax pair eigenfunction $\Psi(\lambda_0)=0$ corresponds to the limit of the infinite-periodic solutions. A convenient procedure of generating higher-order lump solutions of the Zakharov equation is also investigated based on the idea of the degeneration of double eigenvalues in multi-breather solutions.
从呼吸解到整体解:Zakharov方程的一种构造方法
本文研究了Zakharov方程的周期解。通过对由$n$ -fold Darboux变换得到的Lax对的特征值进行极限运算$\lambda_{2l-1}\to\lambda_1$,首先从平面波种子得到了阶- $n$呼吸位置解。由于Lax对特征函数$\Psi(\lambda_0)=0$的唯一特征值$\lambda_0$对应于无限周期解的极限,证明了通过取呼吸位置解的极限$\lambda_1\to\lambda_0$可以进一步构造一个阶- $n$块解。基于多重呼吸解中双特征值退化的思想,研究了生成Zakharov方程高阶块解的简便方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信