A stochastic model leading to various particle mass distributions including the RRSB distribution

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dietrich Stoyan, Zong-Xian Zhang
{"title":"A stochastic model leading to various particle mass distributions including the RRSB distribution","authors":"Dietrich Stoyan,&nbsp;Zong-Xian Zhang","doi":"10.1007/s10035-023-01359-2","DOIUrl":null,"url":null,"abstract":"<div><p>Modern particle size statistics uses many different statistical distributions, but these distributions are empirical approximations for theoretically unknown relationships. This also holds true for the famous RRSB (Rosin-Rammler-Sperling-Bennett) distribution. Based on the compound Poisson process, this paper introduces a simple stochastic model that leads to a general product form of particle mass distributions. The beauty of this product form is that its two factors characterize separately the two main components of samples of particles, namely, individual particle masses and total particle number. The RRSB distribution belongs to the class of distributions following the new model. Its simple product form can be a starting point for developing new particle mass distributions. The model is applied to the statistical analysis of samples of blast-produced fragments measured by hand, which enables a precise investigation of the mass-size relationship. This model-based analysis leads to plausible estimates of the mass and size factors and helps to understand the influence of blasting conditions on fragment-mass distributions.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01359-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01359-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern particle size statistics uses many different statistical distributions, but these distributions are empirical approximations for theoretically unknown relationships. This also holds true for the famous RRSB (Rosin-Rammler-Sperling-Bennett) distribution. Based on the compound Poisson process, this paper introduces a simple stochastic model that leads to a general product form of particle mass distributions. The beauty of this product form is that its two factors characterize separately the two main components of samples of particles, namely, individual particle masses and total particle number. The RRSB distribution belongs to the class of distributions following the new model. Its simple product form can be a starting point for developing new particle mass distributions. The model is applied to the statistical analysis of samples of blast-produced fragments measured by hand, which enables a precise investigation of the mass-size relationship. This model-based analysis leads to plausible estimates of the mass and size factors and helps to understand the influence of blasting conditions on fragment-mass distributions.

Abstract Image

一个导致各种粒子质量分布的随机模型,包括RRSB分布
现代粒度统计使用许多不同的统计分布,但这些分布是对理论上未知关系的经验近似。这也适用于著名的RRSB (Rosin-Rammler-Sperling-Bennett)分布。本文在复合泊松过程的基础上,引入了一个简单的随机模型,该模型可以推导出粒子质量分布的一般乘积形式。这种乘积形式的美妙之处在于,它的两个因子分别表征了粒子样本的两个主要组成部分,即单个粒子质量和总粒子数。RRSB分布属于遵循新模型的一类分布。它的简单乘积形式可以作为发展新粒子质量分布的起点。该模型应用于手工测量的爆炸产生的碎片样本的统计分析,从而能够精确地研究质量-尺寸关系。这种基于模型的分析导致对质量和尺寸因素的合理估计,并有助于了解爆破条件对碎片质量分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信