On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative

IF 0.5 4区 数学 Q3 MATHEMATICS
Catharine Lo, J. Rodrigues
{"title":"On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative","authors":"Catharine Lo, J. Rodrigues","doi":"10.4171/PM/2100","DOIUrl":null,"url":null,"abstract":"In this work, we consider the nonlocal obstacle problem with a given obstacle $\\psi$ in a bounded Lipschitz domain $\\Omega$ in $\\mathbb{R}^{d}$, such that $\\mathbb{K}_\\psi^s=\\{v\\in H^s_0(\\Omega):v\\geq\\psi \\text{ a.e. in }\\Omega\\}\\neq\\emptyset$, given by \\[u\\in\\mathbb{K}_\\psi^s:\\langle\\mathcal{L}_au,v-u\\rangle\\geq\\langle F,v-u\\rangle\\quad\\forall v\\in\\mathbb{K}^s_\\psi,\\] for $F\\in H^{-s}(\\Omega)$, the dual space of $H^s_0(\\Omega)$, $0<s<1$. The nonlocal operator $\\mathcal{L}_a:H^s_0(\\Omega)\\to H^{-s}(\\Omega)$ is defined with a measurable, bounded, strictly positive singular kernel $a(x,y)$, possibly not symmetric, by \\[\\langle\\mathcal{L}_au,v\\rangle=P.V.\\int_{\\mathbb{R}^d}\\int_{\\mathbb{R}^d}v(x)(u(x)-u(y))a(x,y)dydx=\\mathcal{E}_a(u,v),\\] with $\\mathcal{E}_a$ being a Dirichlet form. Also, the fractional operator $\\tilde{\\mathcal{L}}_A=-D^s\\cdot AD^s$ defined with the distributional Riesz $s$-fractional derivative and a bounded matrix $A(x)$ gives a well defined integral singular kernel. The corresponding $s$-fractional obstacle problem converges as $s\\nearrow1$ to the obstacle problem in $H^1_0(\\Omega)$ with the operator $-D\\cdot AD$ given with the gradient $D$. We mainly consider problems involving the bilinear form $\\mathcal{E}_a$ with one or two obstacles, and the N-membranes problem, deriving a weak maximum principle, comparison properties, approximation by bounded penalization, and the Lewy-Stampacchia inequalities. This provides regularity of the solutions, including a global estimate in $L^\\infty(\\Omega)$, local H\\\"older regularity when $a$ is symmetric, and local regularity in $W^{2s,p}_{loc}(\\Omega)$ and $C^1(\\Omega)$ for fractional $s$-Laplacian obstacle-type problems. These novel results are complemented with the extension of the Lewy-Stampacchia inequalities to the order dual of $H^s_0(\\Omega)$ and some remarks on the associated $s$-capacity for general $\\mathcal{L}_a$.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PM/2100","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we consider the nonlocal obstacle problem with a given obstacle $\psi$ in a bounded Lipschitz domain $\Omega$ in $\mathbb{R}^{d}$, such that $\mathbb{K}_\psi^s=\{v\in H^s_0(\Omega):v\geq\psi \text{ a.e. in }\Omega\}\neq\emptyset$, given by \[u\in\mathbb{K}_\psi^s:\langle\mathcal{L}_au,v-u\rangle\geq\langle F,v-u\rangle\quad\forall v\in\mathbb{K}^s_\psi,\] for $F\in H^{-s}(\Omega)$, the dual space of $H^s_0(\Omega)$, $0
一类与分布Riesz分数阶导数有关的非局部障碍型问题
在这项工作中,我们考虑了在$\mathbb{R}^{d}$中有界Lipschitz域$\Omega$中给定障碍物$\psi$的非局部障碍问题,使得$\mathbb{K}_\psi^s=\{v\in H^s_0(\Omega):v\geq\psi\text{a.e.in}\Omega\}\neq\pemptyset$,由\[u\in\mathbb给出{K}_\psi ^s:\langle\mathcal{L}_au,v-u\rangle\geq\langle F,v-u\ rangle\quad\ for all v\in\mathbb{K}^s_\psi,\]对于$F\in H^{-s}(\Omega)$,$H^s_0(\Ome茄)$的对偶空间,$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信