Tutorial: Lessons Learned for Behavior Analysts from Data Scientists.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-05-25 eCollection Date: 2024-03-01 DOI:10.1007/s40614-023-00376-z
Leslie Neely, Sakiko Oyama, Qian Chen, Amina Qutub, Chen Chen
{"title":"Tutorial: Lessons Learned for Behavior Analysts from Data Scientists.","authors":"Leslie Neely, Sakiko Oyama, Qian Chen, Amina Qutub, Chen Chen","doi":"10.1007/s40614-023-00376-z","DOIUrl":null,"url":null,"abstract":"<p><p>Big data is a computing term used to refer to large and complex data sets, typically consisting of terabytes or more of diverse data that is produced rapidly. The analysis of such complex data sets requires advanced analysis techniques with the capacity to identify patterns and abstract meanings from the vast data. The field of data science combines computer science with mathematics/statistics and leverages artificial intelligence, in particular machine learning, to analyze big data. This field holds great promise for behavior analysis, where both clinical and research studies produce large volumes of diverse data at a rapid pace (i.e., big data). This article presents basic lessons for the behavior analytic researchers and clinicians regarding integration of data science into the field of behavior analysis. We provide guidance on how to collect, protect, and process the data, while highlighting the importance of collaborating with data scientists to select a proper machine learning model that aligns with the project goals and develop models with input from human experts. We hope this serves as a guide to support the behavior analysts interested in the field of data science to advance their practice or research, and helps them avoid some common pitfalls.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11035514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s40614-023-00376-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Big data is a computing term used to refer to large and complex data sets, typically consisting of terabytes or more of diverse data that is produced rapidly. The analysis of such complex data sets requires advanced analysis techniques with the capacity to identify patterns and abstract meanings from the vast data. The field of data science combines computer science with mathematics/statistics and leverages artificial intelligence, in particular machine learning, to analyze big data. This field holds great promise for behavior analysis, where both clinical and research studies produce large volumes of diverse data at a rapid pace (i.e., big data). This article presents basic lessons for the behavior analytic researchers and clinicians regarding integration of data science into the field of behavior analysis. We provide guidance on how to collect, protect, and process the data, while highlighting the importance of collaborating with data scientists to select a proper machine learning model that aligns with the project goals and develop models with input from human experts. We hope this serves as a guide to support the behavior analysts interested in the field of data science to advance their practice or research, and helps them avoid some common pitfalls.

教程:数据科学家为行为分析师提供的经验教训
大数据是一个计算术语,用于指大型复杂数据集,通常由 TB 或更多快速产生的各种数据组成。对此类复杂数据集的分析需要先进的分析技术,能够从海量数据中识别模式和抽象含义。数据科学领域结合了计算机科学和数学/统计学,并利用人工智能,特别是机器学习来分析大数据。这一领域为行为分析带来了巨大前景,因为临床和研究都会快速产生大量不同的数据(即大数据)。本文为行为分析研究人员和临床医生介绍了将数据科学融入行为分析领域的基本经验。我们将就如何收集、保护和处理数据提供指导,同时强调与数据科学家合作选择符合项目目标的适当机器学习模型的重要性,并在开发模型时听取人类专家的意见。我们希望这本指南能够为对数据科学领域感兴趣的行为分析师提供支持,以促进他们的实践或研究,并帮助他们避免一些常见的陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信