{"title":"On isosupremic vectorial minimisation problems in L ∞ with general nonlinear constraints","authors":"E. Clark, Nikos Katzourakis","doi":"10.1515/acv-2022-0068","DOIUrl":null,"url":null,"abstract":"Abstract We study minimisation problems in L ∞ {L^{\\infty}} for general quasiconvex first order functionals, where the class of admissible mappings is constrained by the sublevel sets of another supremal functional and by the zero set of a nonlinear operator. Examples of admissible operators include those expressing pointwise, unilateral, integral isoperimetric, elliptic quasilinear differential, Jacobian and null Lagrangian constraints. Via the method of L p {L^{p}} approximations as p → ∞ {p\\to\\infty} , we illustrate the existence of a special L ∞ {L^{\\infty}} minimiser which solves a divergence PDE system involving certain auxiliary measures as coefficients. This system can be seen as a divergence form counterpart of the Aronsson PDE system which is associated with the constrained L ∞ {L^{\\infty}} variational problem.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0068","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We study minimisation problems in L ∞ {L^{\infty}} for general quasiconvex first order functionals, where the class of admissible mappings is constrained by the sublevel sets of another supremal functional and by the zero set of a nonlinear operator. Examples of admissible operators include those expressing pointwise, unilateral, integral isoperimetric, elliptic quasilinear differential, Jacobian and null Lagrangian constraints. Via the method of L p {L^{p}} approximations as p → ∞ {p\to\infty} , we illustrate the existence of a special L ∞ {L^{\infty}} minimiser which solves a divergence PDE system involving certain auxiliary measures as coefficients. This system can be seen as a divergence form counterpart of the Aronsson PDE system which is associated with the constrained L ∞ {L^{\infty}} variational problem.
期刊介绍:
Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.