P. V. S. M. Krishna, Avireni Srinivasulu, R. K. Lal
{"title":"A Novel Dual Output Comparator Based on Carbon Nano Tube Field Effect Transistors Second Generation Current Controlled Conveyor","authors":"P. V. S. M. Krishna, Avireni Srinivasulu, R. K. Lal","doi":"10.2174/1876402912999201209211133","DOIUrl":null,"url":null,"abstract":"\n\nCurrent comparators are useful in many analog circuits and communication systems. The increasing demand to integrate wearable health monitoring systems in telemedicine and biomedical applications that helps in early detection of abnormal conditions in patients, comparator is one of its core.\n\n\n\nWearable and implantable medical devices work primarily on signal acquisition and wireless transmission. In signal acquisition, analogue to digital converter (ADC) is the prime module. Conversion is done using the sampling process and samples are generated by comparing the input signal with the threshold level. For this purpose, comparator circuits are more preferable. This manuscript presents a novel dual output comparator design by using carbon nanotube field effect transistor second generation current controlled conveyor (CNCCCII). This CNCCCII is realized with the present day technology called carbon nanotube field effect transistors (CNFETs).\n\n\n\nThe proposed comparator topology is designed with 32 nm CNFET technology files with a supply voltage of ±0.9 V using Cadence Virtuoso simulator tool. The performance of the proposed design is tested using transient analysis, Montecarlo analysis, temperature sweep, and finally compared with the existing models.\n\n\n\nThe proposed comparator has the advantage of requiring single CNCCCII with only one resistor and is preferable for monolithic IC fabrication. The proposed circuit implemented using CNFETs gives a substantial improvement in supply voltage requirement and less variation in output voltage levels over the existing technologies.\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876402912999201209211133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Current comparators are useful in many analog circuits and communication systems. The increasing demand to integrate wearable health monitoring systems in telemedicine and biomedical applications that helps in early detection of abnormal conditions in patients, comparator is one of its core.
Wearable and implantable medical devices work primarily on signal acquisition and wireless transmission. In signal acquisition, analogue to digital converter (ADC) is the prime module. Conversion is done using the sampling process and samples are generated by comparing the input signal with the threshold level. For this purpose, comparator circuits are more preferable. This manuscript presents a novel dual output comparator design by using carbon nanotube field effect transistor second generation current controlled conveyor (CNCCCII). This CNCCCII is realized with the present day technology called carbon nanotube field effect transistors (CNFETs).
The proposed comparator topology is designed with 32 nm CNFET technology files with a supply voltage of ±0.9 V using Cadence Virtuoso simulator tool. The performance of the proposed design is tested using transient analysis, Montecarlo analysis, temperature sweep, and finally compared with the existing models.
The proposed comparator has the advantage of requiring single CNCCCII with only one resistor and is preferable for monolithic IC fabrication. The proposed circuit implemented using CNFETs gives a substantial improvement in supply voltage requirement and less variation in output voltage levels over the existing technologies.