Lifting problem for minimally wild covers of Berkovich curves

IF 0.9 1区 数学 Q2 MATHEMATICS
Uri Brezner, M. Temkin
{"title":"Lifting problem for minimally wild covers of Berkovich curves","authors":"Uri Brezner, M. Temkin","doi":"10.1090/jag/728","DOIUrl":null,"url":null,"abstract":"<p>This work continues the study of residually wild morphisms <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper Y right-arrow upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f\\colon Y\\to X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of Berkovich curves initiated in [Adv. Math. 303 (2016), pp. 800-858]. The different function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\delta _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> introduced in that work is the primary discrete invariant of such covers. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not residually tame, it provides a non-trivial enhancement of the classical invariant of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> consisting of morphisms of reductions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f overTilde colon upper Y overTilde right-arrow upper X overTilde\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>Y</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>X</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde f\\colon \\widetilde Y\\to \\widetilde X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and metric skeletons <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript f Baseline colon normal upper Gamma Subscript upper Y Baseline right-arrow normal upper Gamma Subscript upper X Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>Y</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma _f\\colon \\Gamma _Y\\to \\Gamma _X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper we interpret <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\delta _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as the norm of the canonical trace section <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\tau _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the dualizing sheaf <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\omega _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and introduce a finer reduction invariant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau overTilde Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde \\tau _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which is (loosely speaking) a section of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript f overTilde Superscript log\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>log</mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\omega _{\\widetilde f}^{\\operatorname {log}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our main result generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of residually tame morphism to the case of minimally residually wild morphisms. For such morphisms we describe all restrictions the datum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f overTilde comma normal upper Gamma Subscript f Baseline comma delta vertical-bar Subscript normal upper Gamma Sub Subscript upper Y Subscript Baseline comma tau overTilde Subscript f Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>Y</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\widetilde f,\\Gamma _f,\\delta |_{\\Gamma _Y},\\widetilde \\tau _f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfies and prove that, conversely, any quadruple satisfying these restrictions can be lifted to a morphism of Berkovich curves.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jag/728","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/728","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

This work continues the study of residually wild morphisms f : Y X f\colon Y\to X of Berkovich curves initiated in [Adv. Math. 303 (2016), pp. 800-858]. The different function δ f \delta _f introduced in that work is the primary discrete invariant of such covers. When f f is not residually tame, it provides a non-trivial enhancement of the classical invariant of f f consisting of morphisms of reductions f ~ : Y ~ X ~ \widetilde f\colon \widetilde Y\to \widetilde X and metric skeletons Γ f : Γ Y Γ X \Gamma _f\colon \Gamma _Y\to \Gamma _X . In this paper we interpret δ f \delta _f as the norm of the canonical trace section τ f \tau _f of the dualizing sheaf ω f \omega _f and introduce a finer reduction invariant τ ~ f \widetilde \tau _f , which is (loosely speaking) a section of ω f ~ log \omega _{\widetilde f}^{\operatorname {log}} . Our main result generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of residually tame morphism to the case of minimally residually wild morphisms. For such morphisms we describe all restrictions the datum ( f ~ , Γ f , δ | Γ Y , τ ~ f ) (\widetilde f,\Gamma _f,\delta |_{\Gamma _Y},\widetilde \tau _f) satisfies and prove that, conversely, any quadruple satisfying these restrictions can be lifted to a morphism of Berkovich curves.

Berkovich曲线最小野覆盖的提升问题
本工作继续研究Berkovich曲线的剩余野生态态f: Y→X f \colon Y \to X[数学学报,303 (2016),pp. 800-858]。在那项工作中引入的不同函数δ f \delta _f是这些覆盖的主要离散不变量。当f不是剩余驯服时,它提供了由约化f的态射组成的f的经典不变量的非平凡增强:Y→X \widetilde f \colon\widetilde Y \to\widetilde X和公制骨架Γ f: Γ Y→Γ X \Gamma _f \colon\Gamma _Y \to\Gamma _X。在本文中,我们将δ f \delta _f解释为对偶束ω f \omega _f的典型迹段τ f \tau _f的范数,并引入一个更精细的约化不变量τ f \widetilde\tau _f,也就是ω f log \omega _ {\widetilde f}^{\operatorname log{的一部分。我们的主要结果将amni - baker - brugall - rabinoff的一个提升定理从剩余驯服态射推广到最小剩余野性态射。对于这样的态射,我们描述了所有的限制:基准(f, Γ f, δ | Γ Y, τ f) (}}\widetilde f, \Gamma _f, \delta |_ {\Gamma _Y,}\widetilde\tau _f)满足并证明,反过来,任何满足这些限制的四重元都可以提升为Berkovich曲线的态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信