{"title":"Lifting problem for minimally wild covers of Berkovich curves","authors":"Uri Brezner, M. Temkin","doi":"10.1090/jag/728","DOIUrl":null,"url":null,"abstract":"<p>This work continues the study of residually wild morphisms <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper Y right-arrow upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f\\colon Y\\to X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of Berkovich curves initiated in [Adv. Math. 303 (2016), pp. 800-858]. The different function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\delta _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> introduced in that work is the primary discrete invariant of such covers. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not residually tame, it provides a non-trivial enhancement of the classical invariant of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> consisting of morphisms of reductions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f overTilde colon upper Y overTilde right-arrow upper X overTilde\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>Y</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>X</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde f\\colon \\widetilde Y\\to \\widetilde X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and metric skeletons <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript f Baseline colon normal upper Gamma Subscript upper Y Baseline right-arrow normal upper Gamma Subscript upper X Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>Y</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma _f\\colon \\Gamma _Y\\to \\Gamma _X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper we interpret <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\delta _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as the norm of the canonical trace section <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\tau _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the dualizing sheaf <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\omega _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and introduce a finer reduction invariant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau overTilde Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde \\tau _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which is (loosely speaking) a section of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript f overTilde Superscript log\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>log</mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\omega _{\\widetilde f}^{\\operatorname {log}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our main result generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of residually tame morphism to the case of minimally residually wild morphisms. For such morphisms we describe all restrictions the datum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f overTilde comma normal upper Gamma Subscript f Baseline comma delta vertical-bar Subscript normal upper Gamma Sub Subscript upper Y Subscript Baseline comma tau overTilde Subscript f Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>Y</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\widetilde f,\\Gamma _f,\\delta |_{\\Gamma _Y},\\widetilde \\tau _f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfies and prove that, conversely, any quadruple satisfying these restrictions can be lifted to a morphism of Berkovich curves.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jag/728","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/728","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
Abstract
This work continues the study of residually wild morphisms f:Y→Xf\colon Y\to X of Berkovich curves initiated in [Adv. Math. 303 (2016), pp. 800-858]. The different function δf\delta _f introduced in that work is the primary discrete invariant of such covers. When ff is not residually tame, it provides a non-trivial enhancement of the classical invariant of ff consisting of morphisms of reductions f~:Y~→X~\widetilde f\colon \widetilde Y\to \widetilde X and metric skeletons Γf:ΓY→ΓX\Gamma _f\colon \Gamma _Y\to \Gamma _X. In this paper we interpret δf\delta _f as the norm of the canonical trace section τf\tau _f of the dualizing sheaf ωf\omega _f and introduce a finer reduction invariant τ~f\widetilde \tau _f, which is (loosely speaking) a section of ωf~log\omega _{\widetilde f}^{\operatorname {log}}. Our main result generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of residually tame morphism to the case of minimally residually wild morphisms. For such morphisms we describe all restrictions the datum (f~,Γf,δ|ΓY,τ~f)(\widetilde f,\Gamma _f,\delta |_{\Gamma _Y},\widetilde \tau _f) satisfies and prove that, conversely, any quadruple satisfying these restrictions can be lifted to a morphism of Berkovich curves.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.