{"title":"Applying transfer learning to achieve precision marketing in an omni-channel system – a case study of a sharing kitchen platform","authors":"Ming‐Chuan Chiu, Kai-Hsiang Chuang","doi":"10.1080/00207543.2020.1868595","DOIUrl":null,"url":null,"abstract":"Omni-channel marketing is an enhanced cross-channel business model involving shared data that allows enterprises to enhance and facilitate customer experience. Omni-channel opportunities shape retail business and shopper behaviours by coordinating data across all channel platforms while enabling their simultaneous use. Artificial intelligence (AI) has played an increasingly critical role in marketing analysis. With the proper training, AI can predict consumer preferences and provide recommendations based on historical data to achieve precision marketing in e-commerce. At present, however, the existent chatbots on many product-ordering platforms lack AI refinement, resulting in the need to ask customers multiple questions before generating a reliable suggestion, yet an effective way to incorporate AI in an omni-channel platform has remained vague. Hence, the aim of this study was to develop an omni-channel chatbot that incorporates iOS, Android, and web components. The chatbot was designed to achieve personalised service and precision marketing using convolutional neural networks (CNNs). A shared kitchen case study demonstrates the advantages of the proposed method, which is transferable to other consumer applications such as clothing selection or personalised services. The number of food offerings and the quality of image classifiers set the research limitations, pointing toward the direction of future research.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00207543.2020.1868595","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00207543.2020.1868595","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14
Abstract
Omni-channel marketing is an enhanced cross-channel business model involving shared data that allows enterprises to enhance and facilitate customer experience. Omni-channel opportunities shape retail business and shopper behaviours by coordinating data across all channel platforms while enabling their simultaneous use. Artificial intelligence (AI) has played an increasingly critical role in marketing analysis. With the proper training, AI can predict consumer preferences and provide recommendations based on historical data to achieve precision marketing in e-commerce. At present, however, the existent chatbots on many product-ordering platforms lack AI refinement, resulting in the need to ask customers multiple questions before generating a reliable suggestion, yet an effective way to incorporate AI in an omni-channel platform has remained vague. Hence, the aim of this study was to develop an omni-channel chatbot that incorporates iOS, Android, and web components. The chatbot was designed to achieve personalised service and precision marketing using convolutional neural networks (CNNs). A shared kitchen case study demonstrates the advantages of the proposed method, which is transferable to other consumer applications such as clothing selection or personalised services. The number of food offerings and the quality of image classifiers set the research limitations, pointing toward the direction of future research.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.