Processing and model design of the gamma oscillation activity based on FitzHugh-Nagumo model and its interaction with slow rhythms in the brain

Q3 Physics and Astronomy
E. S. Sevasteeva, S. Plotnikov, V. Lynnyk
{"title":"Processing and model design of the gamma oscillation activity based on FitzHugh-Nagumo model and its interaction with slow rhythms in the brain","authors":"E. S. Sevasteeva, S. Plotnikov, V. Lynnyk","doi":"10.35470/2226-4116-2021-10-4-265-272","DOIUrl":null,"url":null,"abstract":"The brain is processing information 24 hours a day. There are millions of processes proceeding in it accompanied by various spectra of rhythms. This paper tests the hypothesis that the slow delta rhythm excites the gamma rhythm oscillations. Unlike other papers, we determine the slow rhythm spectrum not at the hypothesis stage but during the experiment. We design algorithms of filtering, envelope extraction, and correlation coefficient calculation for signal processing. Moreover, we examine the data on all electroencephalogram channels, which allows us to make a more reasonable conclusion. We confirm that a slow delta rhythm excites a fast gamma rhythm with an amplitude-phase type of interaction and calculate a delay between these two signals\nequal to about half a second.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2021-10-4-265-272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

Abstract

The brain is processing information 24 hours a day. There are millions of processes proceeding in it accompanied by various spectra of rhythms. This paper tests the hypothesis that the slow delta rhythm excites the gamma rhythm oscillations. Unlike other papers, we determine the slow rhythm spectrum not at the hypothesis stage but during the experiment. We design algorithms of filtering, envelope extraction, and correlation coefficient calculation for signal processing. Moreover, we examine the data on all electroencephalogram channels, which allows us to make a more reasonable conclusion. We confirm that a slow delta rhythm excites a fast gamma rhythm with an amplitude-phase type of interaction and calculate a delay between these two signals equal to about half a second.
基于FitzHugh-Nagumo模型的伽马振荡活动的处理和模型设计及其与大脑慢节奏的相互作用
大脑一天24小时都在处理信息。其中有数以百万计的过程,伴随着各种各样的节奏谱。本文验证了慢δ节奏激发γ节奏振荡的假设。与其他论文不同,我们不是在假设阶段而是在实验阶段确定慢节奏谱。我们设计了信号处理的滤波、包络提取和相关系数计算算法。此外,我们检查了所有脑电图通道的数据,这使我们能够做出更合理的结论。我们证实了一个缓慢的δ节奏激发了一个具有幅相型相互作用的快速γ节奏,并计算出这两个信号之间的延迟约为半秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信