Broadband Wide-Angle LIWR Perfect Absorber with Double Dielectric Layer

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL
Xiao Lin Wang, Lu Zhu, Yuan Yuan Liu
{"title":"Broadband Wide-Angle LIWR Perfect Absorber with Double Dielectric Layer","authors":"Xiao Lin Wang,&nbsp;Lu Zhu,&nbsp;Yuan Yuan Liu","doi":"10.1007/s11468-023-01879-w","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>The wide-bandwidth infrared absorbers of metamaterials have a wide range of applications in thermal emission and imaging. But achieving full window coverage and perfect absorbance in the long-wave infrared band remains a challenge. In order to realize this goal, firstly using impedance matching and equivalent circuits designed a Ti/GaAs/Ti structure. This absorber can achieve a mean absorption of more than 93% in the 8?~?13?μm range. To further improve the absorbance and bandwidth, a stacked metamaterial bi-dielectric perfect absorber based on Ti/GaAs/Ti is then proposed, which has a mean absorbance of up to 96.59% with polarization independence in the 8?~?15?μm band range. It can be seen that the absorption of over 90% (93.8% in TM mode and 91.4% in TE mode) is still maintained as the angle of incidence is increased to 50°. Perfectly absorbed of Broadband is attained through the mixed effect of the coupled PSPR, LSPR, and the intrinsic absorption of the Si<sub>3</sub>N<sub>4</sub>.\n</p></div></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"18 4","pages":"1593 - 1605"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-01879-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract

The wide-bandwidth infrared absorbers of metamaterials have a wide range of applications in thermal emission and imaging. But achieving full window coverage and perfect absorbance in the long-wave infrared band remains a challenge. In order to realize this goal, firstly using impedance matching and equivalent circuits designed a Ti/GaAs/Ti structure. This absorber can achieve a mean absorption of more than 93% in the 8?~?13?μm range. To further improve the absorbance and bandwidth, a stacked metamaterial bi-dielectric perfect absorber based on Ti/GaAs/Ti is then proposed, which has a mean absorbance of up to 96.59% with polarization independence in the 8?~?15?μm band range. It can be seen that the absorption of over 90% (93.8% in TM mode and 91.4% in TE mode) is still maintained as the angle of incidence is increased to 50°. Perfectly absorbed of Broadband is attained through the mixed effect of the coupled PSPR, LSPR, and the intrinsic absorption of the Si3N4.

双介电层宽带广角LIWR完美吸收器
摘要超材料的宽带宽红外吸收剂在热发射和成像方面有着广泛的应用。但在长波红外波段实现全窗口覆盖和完美吸光度仍然是一个挑战。为了实现这一目标,首先利用阻抗匹配和等效电路设计了Ti/GaAs/Ti结构。该吸收剂在8°~ 13°范围内的平均吸收率可达93%以上。μm的范围。为了进一步提高吸光度和带宽,提出了一种基于Ti/GaAs/Ti的堆叠型超材料双介电完美吸波器,该吸波器在8°~ 15°范围内的平均吸光度可达96.59%,且与极化无关。μm波段范围。可以看出,当入射角增加到50°时,仍然保持90%以上的吸收率(TM模式为93.8%,TE模式为91.4%)。通过耦合的PSPR、LSPR和Si3N4的本征吸收的混合效应,实现了宽带的完美吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信