ERRATUM TO: CONNECTIVITY AND PURITY FOR LOGARITHMIC MOTIVES

IF 1.1 2区 数学 Q1 MATHEMATICS
F. Binda, Alberto Merici
{"title":"ERRATUM TO: CONNECTIVITY AND PURITY FOR LOGARITHMIC MOTIVES","authors":"F. Binda, Alberto Merici","doi":"10.1017/s1474748022000123","DOIUrl":null,"url":null,"abstract":"The proof of [1, Lemma 7.2] contains a gap: the equality \n \n \n \n$\\omega _{\\sharp } h_{0}(\\Lambda _{\\mathrm {ltr}}(\\eta ,\\mathrm {triv})) = \\omega _{\\sharp } h_{0}(\\omega ^{*}\\Lambda _{\\mathrm {tr}}(\\eta ))$\n\n \n is false. Indeed one can check that for \n \n \n \n$X\\in \\mathbf {Sm}(k)$\n\n \n proper, \n \n \n \n$$ \\begin{align*} \\operatorname{Hom}( \\omega_{\\sharp} h_{0}(\\Lambda_{\\mathrm{ltr}} (\\eta_{X}, \\mathrm{triv})), \\mathbf{G}_{a}) \\neq \\operatorname{Hom}( \\omega_{\\sharp} h_{0} (\\omega^{*} \\Lambda_{{\\mathrm{tr}}}( \\eta_{X})) , \\mathbf{G}_{a}), \\end{align*} $$\n\n \n as the left-hand side is \n \n \n \n$\\mathbf {G}_{a}(\\eta _{X})$\n\n \n , whereas the right-hand side is \n \n \n \n$\\mathbf {G}_{a}(X)$\n\n \n . For now, we can give a proof only of a weaker version of [1, Proposition 7.3]:","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"22 1","pages":"1001 - 1002"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000123","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The proof of [1, Lemma 7.2] contains a gap: the equality $\omega _{\sharp } h_{0}(\Lambda _{\mathrm {ltr}}(\eta ,\mathrm {triv})) = \omega _{\sharp } h_{0}(\omega ^{*}\Lambda _{\mathrm {tr}}(\eta ))$ is false. Indeed one can check that for $X\in \mathbf {Sm}(k)$ proper, $$ \begin{align*} \operatorname{Hom}( \omega_{\sharp} h_{0}(\Lambda_{\mathrm{ltr}} (\eta_{X}, \mathrm{triv})), \mathbf{G}_{a}) \neq \operatorname{Hom}( \omega_{\sharp} h_{0} (\omega^{*} \Lambda_{{\mathrm{tr}}}( \eta_{X})) , \mathbf{G}_{a}), \end{align*} $$ as the left-hand side is $\mathbf {G}_{a}(\eta _{X})$ , whereas the right-hand side is $\mathbf {G}_{a}(X)$ . For now, we can give a proof only of a weaker version of [1, Proposition 7.3]:
勘误表:对数动机的连通性和纯粹性
[1,引理7.2]的证明包含一个间隙:等式$\omega_{\sharp}h{0}(\Lambda_{\mathrm{ltr}}(\eta,\mathrm{triv}。事实上,我们可以检查$X\in\mathbf{Sm}(k)$proper、$$\beggin{align*}\ operatorname{Hom}{G}_{a} )\neq\运算符名称{Hom}(\omega_{\sharp}h{0}(\ omega^{*}\Lambda_{\mathrm{tr}})(\ eta_{X})),\mathbf{G}_{a} ),\end{align*}$$,因为左侧是$\mathbf{G}_{a} (\eta_{X})$,而右侧是$\mathbf{G}_{a} (X)$。目前,我们只能给出[1,命题7.3]的较弱版本的证明:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信