{"title":"Relative Dehn functions, hyperbolically embedded subgroups and combination theorems","authors":"H. Bigdely, Eduardo Martínez-Pedroza","doi":"10.1017/s0017089523000265","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Consider the following classes of pairs consisting of a group and a finite collection of subgroups:<jats:list list-type=\"bullet\">\n\t <jats:list-item>\n\t\t<jats:label>•</jats:label>\n\t\t<jats:p>\n\t\t <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline1.png\" />\n\t\t <jats:tex-math>\n$ \\mathcal{C}= \\left \\{ (G,\\mathcal{H}) \\mid \\text{$\\mathcal{H}$ is hyperbolically embedded in $G$} \\right \\}$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>\n\t\t</jats:p>\n\t </jats:list-item>\n\t <jats:list-item>\n\t\t<jats:label>•</jats:label>\n\t\t<jats:p>\n\t\t <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline2.png\" />\n\t\t <jats:tex-math>\n$ \\mathcal{D}= \\left \\{ (G,\\mathcal{H}) \\mid \\text{the relative Dehn function of $(G,\\mathcal{H})$ is well-defined} \\right \\} .$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>\n\t\t</jats:p>\n\t </jats:list-item>\n\t </jats:list></jats:p>\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline3.png\" />\n\t\t<jats:tex-math>\n$G$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a group that splits as a finite graph of groups such that each vertex group <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline4.png\" />\n\t\t<jats:tex-math>\n$G_v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is assigned a finite collection of subgroups <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline5.png\" />\n\t\t<jats:tex-math>\n$\\mathcal{H}_v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and each edge group <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline6.png\" />\n\t\t<jats:tex-math>\n$G_e$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is conjugate to a subgroup of some <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline7.png\" />\n\t\t<jats:tex-math>\n$H\\in \\mathcal{H}_v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline8.png\" />\n\t\t<jats:tex-math>\n$e$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is adjacent to <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline9.png\" />\n\t\t<jats:tex-math>\n$v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Then there is a finite collection of subgroups <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline10.png\" />\n\t\t<jats:tex-math>\n$\\mathcal{H}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline11.png\" />\n\t\t<jats:tex-math>\n$G$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> such that<jats:list list-type=\"number\">\n\t <jats:list-item>\n\t\t<jats:label>1.</jats:label>\n\t\t<jats:p>If each <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline12.png\" />\n\t\t <jats:tex-math>\n$(G_v, \\mathcal{H}_v)$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline13.png\" />\n\t\t <jats:tex-math>\n$\\mathcal C$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>, then <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline14.png\" />\n\t\t <jats:tex-math>\n$(G,\\mathcal{H})$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline15.png\" />\n\t\t <jats:tex-math>\n$\\mathcal C$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>.</jats:p>\n\t </jats:list-item>\n\t <jats:list-item>\n\t\t<jats:label>2.</jats:label>\n\t\t<jats:p>If each <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline16.png\" />\n\t\t <jats:tex-math>\n$(G_v, \\mathcal{H}_v)$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline17.png\" />\n\t\t <jats:tex-math>\n$\\mathcal D$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>, then <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline18.png\" />\n\t\t <jats:tex-math>\n$(G,\\mathcal{H})$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline19.png\" />\n\t\t <jats:tex-math>\n$\\mathcal D$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>.</jats:p>\n\t </jats:list-item>\n\t <jats:list-item>\n\t\t<jats:label>3.</jats:label>\n\t\t<jats:p>For any vertex <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline20.png\" />\n\t\t <jats:tex-math>\n$v$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> and for any <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline21.png\" />\n\t\t <jats:tex-math>\n$g\\in G_v$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>, the element <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline22.png\" />\n\t\t <jats:tex-math>\n$g$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is conjugate to an element in some <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline23.png\" />\n\t\t <jats:tex-math>\n$Q\\in \\mathcal{H}_v$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> if and only if <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline24.png\" />\n\t\t <jats:tex-math>\n$g$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is conjugate to an element in some <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline25.png\" />\n\t\t <jats:tex-math>\n$H\\in \\mathcal{H}$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>.</jats:p>\n\t </jats:list-item>\n\t </jats:list></jats:p>\n\t <jats:p>That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral collection of subgroups of an adjacent vertex are the main differences between this work and previous results in the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the literature.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the following classes of pairs consisting of a group and a finite collection of subgroups:•
$ \mathcal{C}= \left \{ (G,\mathcal{H}) \mid \text{$\mathcal{H}$ is hyperbolically embedded in $G$} \right \}$
•
$ \mathcal{D}= \left \{ (G,\mathcal{H}) \mid \text{the relative Dehn function of $(G,\mathcal{H})$ is well-defined} \right \} .$
Let
$G$
be a group that splits as a finite graph of groups such that each vertex group
$G_v$
is assigned a finite collection of subgroups
$\mathcal{H}_v$
, and each edge group
$G_e$
is conjugate to a subgroup of some
$H\in \mathcal{H}_v$
if
$e$
is adjacent to
$v$
. Then there is a finite collection of subgroups
$\mathcal{H}$
of
$G$
such that1.If each
$(G_v, \mathcal{H}_v)$
is in
$\mathcal C$
, then
$(G,\mathcal{H})$
is in
$\mathcal C$
.2.If each
$(G_v, \mathcal{H}_v)$
is in
$\mathcal D$
, then
$(G,\mathcal{H})$
is in
$\mathcal D$
.3.For any vertex
$v$
and for any
$g\in G_v$
, the element
$g$
is conjugate to an element in some
$Q\in \mathcal{H}_v$
if and only if
$g$
is conjugate to an element in some
$H\in \mathcal{H}$
.That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral collection of subgroups of an adjacent vertex are the main differences between this work and previous results in the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the literature.